期刊文献+

一种基于网格的多目标优化方法 被引量:1

A grid-based multi-objective optimization method
下载PDF
导出
摘要 工程设计优化大多为多目标、非线性和隐函数的数学规划问题,通常需要用黑箱商用或专用有限元分析软件的模拟结果进行目标评估.这种计算密集型任务导致巨大的计算消耗.为此,将黑箱优化方法和网格计算技术用于工程优化设计领域.首先,通过拉丁超立方取样在设计域内得到了一个分布相对均匀的样本集合,利用这些样本建立工程优化的克里格(Kriging)替代模型;然后,发展了一种与网格计算技术相结合的优化权系数的网格黑箱多目标优化方法(GBMO),并获得一系列按权系数分布的Pareto解.该方法已经在中国国家网格(CNGrid)环境中实现.工程优化实例表明,该方法有很高的优化效率和加速比,适用于国家网格计算环境下的工程设计优化. Engineering design optimization problems are mostly multi-objective,nonlinear and implicit mathematical programming issues,and their evaluation requires the resolution of the finite element analysis performed by a black-box commercial or professional software.These computation intensive works result in huge computational consumptions.Therefore,the black-box optimization method and grid computing technology are developed in the engineering optimization field.A set of fairly well-distributed samples is first obtained by Latin hypercube sampling(LHS),and a Kriging approximate model for the engineering optimization is constructed by using these sampling points.Then,a combination of the optimal weighted expected improvement and grid computing technology,named grid-based multi-objective optimization method(GBMO),is developed to obtain a series of Pareto solutions according to the weight coefficient distribution.An implementation of the method on the China national grid(CNGrid)is discussed.The engineering optimization examples are given,and the results show that the method has very high speed-up and efficiency and can be applied to the engineering design optimizations under CNGrid environment.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第6期787-793,共7页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(11072048) "九七三"国家重点基础研究发展计划资助项目(2012CB025905)
关键词 网格计算 多目标优化 黑箱方法 抽样函数 期望提高 grid computing multi-objective optimization black-box method sampling guidance function expected improvement
  • 相关文献

参考文献15

  • 1Gade P R. Multi-objective Optimization Techniques and Applications in Chemical Engineering [ M]. Singapore: World Scientific Publishing Company, 2009.
  • 2Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering [J]. Structural and Multidiseiplinary Optimization, 2004, 26 ( 6 ) : 369-379.
  • 3Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions[J].Journal of Global Optimization, 1998, 13(4): 455-492.
  • 4Simpson T W, Mauery T M, Korte J J, etal. Kriging models for global approximation in simulation-based multidisciplinary desiga optimization [J]. The American Institute of Aeronautics and Astronautics, 2001, 39 (12) : 2233- 2241.
  • 5Krejcir P. Development of the Kriging method with application [J]. Applications of Mathematics, 2002, 47(3) :217-230.
  • 6Kerwin W S, Prince J L. The Kriging update model and recursive space-time function estimation [J].IEEE Transactions on Signal Processing, 1999, 47(11) :2942-2952.
  • 7Moekus J, Tiesis V, Zilinskas A. The Application of Bayesian Methods for Seeking the Extremum [M]. New York.. North-Holland Publishing Company, 1978.
  • 8Sobester A, Leafy S J, Keane A J. On the design of optimization strategies based on global response surface approximation models I-Jq. Journal o[ Global Optimization, 2005, 33(1) : 31-59.
  • 9Wolfgang P, Tobias W, Markus V. Clustered multiple generalized expected improvement: A novel infill sampling criterion for surrogate models [C]//2008 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2008 : 3515-3522.
  • 10Rudnyi E, Korvink J. Model order reduction for large scale engineering models developed in ANSYS [C] // Lecture Notes in Computer Science. Berlin: Springer, 2006 : 349-356.

二级参考文献11

  • 1都志辉 刘鹏.网格计算[M].北京:清华大学出版社,2003.9-12,160-164.
  • 2Grid Security in Frastructure[EB/OL].http://www.globus.org/security,2005.
  • 3Legion 1.8 System Administrator Manual[EB/OL].http://legion.virgina.edu,2005.
  • 4GOS 2.0体系结构与关键技术[EB/OL].http://www.cngrid.org/,2005-05.
  • 5迟学斌 陆忠华 邓笋根.中国国家网格建设与应用[J].超级计算通讯,2005,3(2):46-53.
  • 6CNGrid网格集成环境用户手册[EB/OL].http://www.cngrid.cn,2005.
  • 7LOPHAVEN S N, NIELSEN H B, SONDERGAARD J. Aspects of the Matlab toolbox DACE, Technical Report IMM-REP-2002-13, Informatics and mathematical modeling[DB/OL]. Technical University of Denmark, 2002.
  • 8LOPHAVEN S N, NIELSEN H B, SONDERGAARD J. DACE A Matlab Kriging Toolbox[A], Technical Report IMM-TR-2002-12, Informaties and mathematical modeling[DB/OL]. Technical University of Denmark, 2002
  • 9JONES D R , SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998,13 : 455-492.
  • 10WELCH W J, BUCK R J, SACK J. Predicting and computer experiments[J]. Technometrics, 1992, 34 (1): 15-25.

共引文献24

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部