期刊文献+

基于提升小波变换和Hilbert调制技术的故障识别方法 被引量:4

Fault Recognition Method Based on Lifting Wavelet Transform and Hilbert Modulation Technology
下载PDF
导出
摘要 齿轮局部发生故障后,非线性振动信号频谱中齿轮啮合频率及其二、三次谐波附近的边频带均出现显著增长.由于提升小波算法预测和更新原理与故障信号紧密相关,利用提升小波对振动信号进行时频特性分析和信息预处理,通过预测器和更新器的设计取代小波基函数选取过程;随后对蕴含大量故障特征信息的高频细节信号实施Hilbert变换,调制信号的包络谱中彻底剔除常规振动分量仅保留故障信息,该方法可高效识别振动信号频谱中的齿轮故障特征频率.最后用实例验证基于提升小波变换的Hilbert调制分析在齿轮故障诊断中的有效性. The vibration signals generated by the gear partial failure show non-stationary and non- periodic. The sideband spectrum near the gear mesh frequency, the second and the third harmonics of the corresponding frequency spectrum all grow significantly. Because principles of prediction and update are closely related to the fault information, the vibration signals are first analyzed and preprocessed by lift wavelet, and the wavelet basis function selection is replaced by designing the predictor and updater during the signal decomposition process, which can significantly raise the feature extraction efficiency. The high frequency signal is demodulated by Hilbert transformation, the conventional vibration components are removed but only fault information retained in its envelope spectrum, and the faults are located after the fault feature frequency can be identified effectively. An illustration verifies that the Hilbert modulation technology based on lifting wavelet transform is fully competent for gear fauh diagnosis.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第12期1835-1838,共4页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(61001049) 北京市自然科学基金资助项目(4112012)
关键词 故障诊断 提升小波 特征识别 频谱分析 Hilbert调制 fault diagnosis lifting wavelet feature recognition spectrum analysis Hilbert modulation
  • 相关文献

参考文献8

二级参考文献34

  • 1张淑清,陈艳,徐红,蔡文龙.基于小波分析的机械系统振动信号故障诊断[J].仪器仪表学报,2004,25(z1):756-757. 被引量:8
  • 2JiZhong JinTao QinShuren.SIGNAL FEATURE EXTRACTION BASED UPON INDEPENDENT COMPONENT ANALYSIS AND WAVELET TRANSFORM[J].Chinese Journal of Mechanical Engineering,2005,18(1):123-126. 被引量:7
  • 3段晨东,何正嘉.基于提升模式的特征小波构造及其应用[J].振动工程学报,2007,20(1):85-90. 被引量:11
  • 4段晨东.[D].西安:西安交通大学,2005.
  • 5[1]J. Lin, L. Qu. Feature extraction based on Morlet wavelet, its application for mechanical fault diagnosis.Journal of Sound Vibration, 2000,234 (1) : 135~148.
  • 6Sweldens W.The lifting scheme:a custom-design construction of biorthogonal wavelet[J].Applied and Computational Harmonic Analysis,1996,3(2):186-200.
  • 7Sweldens W.The lifting scheme:a construction of second generation wavelets[J].SIAM Journal on Mathematical Analyis,1997,29(2):511-546.
  • 8Sweldens W.Wavelets:what next?[J].Proceedings of the IEEE,1996,84(4):680-685.
  • 9Alexander Y, David M J T, Robert P W D. Robert machine fault detection with independent component analysis and support vector data description.Pattern Recognition Group, Dept. of Applied Physics, Delft University of Technology.
  • 10Gelle G, Colas M, Delaunay G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis. Mechanical Systems and Signal Processing, 2000, 3(14): 427~442.

共引文献62

同被引文献36

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部