期刊文献+

一种快速的反向k近邻查找算法及其改进 被引量:1

Fast Reverse k Nearest Neighbor Search Algorithm and Its Improvement
下载PDF
导出
摘要 提出一种快速的反向k近邻查找算法,该方法利用现代计算机具有外存便宜、运行速度快的特点,预先计算数据之间的距离,并组织为数据索引块存储于外存,由计算机在空闲时自动进行维护.在进行反向最近邻查询时,只需读入相应的索引块,就可进行直接查询,其时间复杂度为O(N),而且不受k的影响.为减少索引块的读取时间,提出一种改进方法来有效地压缩索引块,仅用必要的二进制位来存储对象之间的距离,并将冗余减少到最低水平,提高了算法的效率.最后通过实验分析评估算法的有效性和效率. This paper presents an efficient reverse k nearest neighbor search algorithm. Under the conditions that the secondary storage is cheap and the current computers are powerful enough, the algorithm pre-computes the mutual distance between objects of the dataset, and organizes them into index blocks that are stored in secondary memory and can be update offline automatically by the computer. Only the necessary block into memory is needed, and the reverse k nearest neighbor (RkNN) query for any k can be straightforwardly dore. The time complexity of the query is O(N). To reduce the consumption of the I/O cost for the index block, this paper proposes a method to compress the index block by using the necessary binary bits to store the distance and reducing the redundancy to a minimum level, which effectively improves the efficiency of the algorithm. Finally, experiments show the effectiveness and efficiency of the proposed algorithms.
出处 《北京工业大学学报》 EI CAS CSCD 北大核心 2012年第12期1880-1887,共8页 Journal of Beijing University of Technology
基金 福建省自然科学基金资助项目(2012J01273) 泉州市科技计划项目(2010Z53)
关键词 最近邻 反向k近邻 索引块 nearest neighbor reverse k nearest neighbor (RkNN) index block
  • 相关文献

参考文献12

  • 1CHEEMA M A, ZHANG Wen-jie, LIN Xue-min, et al. Continuous reverse k nearest neighbors queries in Euclidean space and in spatial networks [ J ]. The International Journal on Very Large Data Bases, 2012, 21 : 69-95.
  • 2CABELLO S, DIAZ-BANEZ J M, LANGERMAN S, et al. Facility location problems in the plane based on reverse nearest neighbor queries [ J ]. European Journal of Operational Research, 2010, 202: 99-106.
  • 3KORN F, MUTHUKR1SHNAN S, SRIVASTAVA D. Reverse nearest neighbor aggregates over data streams [ C ]// Proceeding of the 28th VLDB conference, Hong Korlg,August 20-23, 2002: 814-825.
  • 4ACHTERT E, BOHM C, KROGER P, et al. Efficient reverse k-nearest neighbor search in arbitrary metric spaces [ C ] //Proceedings of 2006 ACM SIGMOD International Conference on Management of Data, Chicaco, June 27-29, 2006 : 515-526.
  • 5ACHTERT E, KRIEGEL H P, KROGER P, et al. Reverse k-nearest neighbor search in dynamic and general metric databases [ C ] //EDBT, Saint-Petarburg, March 24-26, 2009: 886-897.
  • 6KORN F, MUTHUKRISHNAN S. Influence sets based on reverse nearest neighbor queries [ C ] // Proceedings of ACM SIGMOD International Conference Management of Data. Dallas. May 14-19. 2000: 201-212.
  • 7LIN King-Ip, NOLEN M, YANG Cong-jun. Applying bulk insertion techniques for dynamic reverse nearest neighbor problems [ C ] // Proceeding Database Engineering and Applications Symposium, Hong Kong, July 16-18, 2003: 290 -297.
  • 8GUTTMAN A. R-trees: a dynamic index structure for spatial searching [ C ] // Proceeding of ACM SIGMOD international conference on management of data, Boston Massachusetts, June 18-21, 1984:47-57.
  • 9YANG Cong-jun, LIN King-Ip. An index structure for efficient reverse nearest neighbor queries [ C] //Proceeding of International Conference on Data Engineering, Heidelberg, April 2-6, 2001 : 485-492.
  • 10TAO Yu-fei, YIU Man-lung, MAMOULIS N. Reverse nearest neighbor search in metric spaces [ J ]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(9) : 1239-1252.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部