期刊文献+

L^p(R^n)上的广义面积积分的推广

Extension of Generalized Area Integrals on L^p(R^n)
下载PDF
导出
摘要 对于1<p<∞,给出了LpR(n)上的广义面积积分更广泛的定义,即Aμ(f)(η)=∫r|η||(Φt*(f)(x)|dμ(x,t)/tn;在这种定义下,广义面积积分是有界的充要条件是μ为Carleson测度之间的关系. In this paper for 1〈p〈∞,the definition of extention of generalized area integrals on L^p(R^n) is given, i. e.Aμ(f)(η)=∫Г〈η〉|(φ1*f)(x)|dμ(x,t)/t^nAnd the necessary and sufficient condition ofgiven generalized area integrals" boundness the authors obtain is that μ is a Carleson measure.
作者 张慧 胡瑞芳
出处 《嘉兴学院学报》 2012年第6期5-8,共4页 Journal of Jiaxing University
基金 浙江省自然科学基金项目(Y6100810)
关键词 广义面积积分 Lp(Rn)空间 CARLESON测度 generalized area integral L^p(R^n) space Carleson measure
  • 相关文献

参考文献2

二级参考文献15

  • 1WU Zhijian.Area operator on Bergman spaces[J].Science China Mathematics,2006,49(7):987-1008. 被引量:7
  • 2[1]Cohn W S.Generalized area operators on Hardy spaces.J Math Anal Appl,1997,216(1):112-121
  • 3[2]Duren P L.Extension of a theorem of Carleson.Bull Amer Math Soc,1969,75:143-146
  • 4[3]Carleson L.An interpolation problem for bounded analytic functions.Amer J Math,1958,80:921-930
  • 5[4]Garnett J B.Bounded Analytic Functions.New York/London:Academic Press,1982
  • 6[5]Luecking D.Trace ideal criteria for Toeplitz operators.J Funct Anal,1987,73(2):345-368
  • 7[6]Wu Z.Carleson measures and multipliers for Dirichlet spaces.J Funct Anal,1999,169(1):148-163
  • 8[7]Coifman R R,Rochberg R.Representation theorems for holomorphic and harmonic functions in Lp.Representation Theorems for Hardy spaces,Astrisque,77,Soc.Math.France,Paris,1980,11-66
  • 9[8]Rochberg R.Decomposition theorems for Bergman spaces and their applications.Operators and function theory.NATO Adv Sci Inst Ser C Math Phys Sci,1985,153:225-277
  • 10[9]Luecking D.Embedding theorems for spaces of analytic functions via Khinchine's inequality.Michigan Math,1993,40(2):333-358

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部