期刊文献+

基于尾部指数回归方法的CVaR估计以及实证研究 被引量:3

Estimation of CVaR and Empirical Analysis Based on Tail Index Regression Model
下载PDF
导出
摘要 在险价值VaR是一种非常重要的金融风险度量方法,近期也有很多关于动态VaR以及条件VaR(CVaR)等方面的研究。根据金融资产的收益率具有重尾特征这一事实,本文假定金融资产收益率服从重尾分布,并假定重尾分布的尾部指数随着收益率发生变化。本文基于尾部指数回归模型对重尾分布的尾部指数进行估计,进而得到收益率尾部数据所服从的条件分布,并首次运用该方法对条件VaR进行估计。本文对沪深300指数进行了实证研究,得到CVaR的估计,对估计得到的CVaR的预测效果作出检验,并与传统VaR估计方法进行了对比,实证结果发现本文方法的预测效果更好。 Value at Risk(VaR) is an important financial risk measurement method,and there is a lot of research on dynamic VaR and conditional VaR recently.According to the fact of financial returns' heavy-tail,the return of financial assets is assumed to obey heavy-tailed distribution,and the heavy-tailed index is assumed to change with returns.Based on the tail index regression model,tail index and conditional distribution are estimated.And,for the first time,CVaR is estimated by the proposed method.An empirical study of Shanghai and Shenzhen 300 Index is presented,and CVaR is estimated and compared with the traditional VaR estimation methods.The test results of risk prediction effect reveal that our method is better.
出处 《统计研究》 CSSCI 北大核心 2012年第11期79-83,共5页 Statistical Research
基金 国家自然科学基金青年科学基金项目(7100****) 高等学校博士学科点专项科研基金(2010340212****)
关键词 尾部指数回归 条件分布 条件在险价值(CVaR) Heavy-tailed Index Regression Conditional Distribution Conditional Value at Risk
  • 相关文献

参考文献12

  • 1Philippe Jorion. Risk2 : Measuring the Risk in Value at Risk [ J ]. Financial Analysts Journal, 1996,52 ( 6 ) :47 - 56.
  • 2Duffle, Pan. An overview of value at risk [ J ]. The Journal of Derivatives, 1997,4 ( 3 ) :7 - 49.
  • 3J. McNeil. Extreme Value Theory for Risk Managers [ P ]. ETH Zentrum CH - 8092,1999.
  • 4Dowd, K. Estimating VaR with order statistics [ J ]. Derivatives, 2001,8(3) :23 -30.
  • 5肖春来,丁绍芳,洪媛.条件收益率下的VaR分析[J].北方工业大学学报,2003,15(3):88-94. 被引量:5
  • 6叶五一,缪柏其,吴振翔.基于Copula方法的条件VaR估计[J].中国科学技术大学学报,2006,36(9):917-922. 被引量:22
  • 7Mandelbrot B. The variation of certain speculative prices [ J ]. Journal of business, 1963,36 ( 4 ) : 394 - 4 19.
  • 8叶五一,缪柏其.应用改进Hill估计计算在险价值[J].中国科学院研究生院学报,2004,21(3):305-309. 被引量:21
  • 9Emorechts, P, Kluppelberg, C, Korshunov, D. Modelling Extremal Events, Berlin, Springer, 1997.
  • 10Hansheng Wang, Chih-Ling Tsai. Tail Index Regression [ J ]. Journal of the American Statistical Association. September 1,2009, 104 (487) :1233 - 1240.

二级参考文献26

  • 1肖春来,柴文义,扬威.条件VaR理论的应用与研究[J].数理统计与管理,2003,22(z1):264-268. 被引量:6
  • 2吴振翔,叶五一,缪柏其.基于Copula的外汇投资组合风险分析[J].中国管理科学,2004,12(4):1-5. 被引量:50
  • 3吴振翔,陈敏,叶五一,缪柏其.基于Copula-GARCH的投资组合风险分析[J].系统工程理论与实践,2006,26(3):45-52. 被引量:85
  • 4Katerina Simons . Value at risk-new approaches to risk management. New England Economic Review, 1996.
  • 5Philippe Jorion. Value at Risk. The McGraw-hill companies, Inc, 1997.
  • 6J P Morgan. RiskMetrics. RiskMetrics monitor. 1996
  • 7Hendricks D. Evaluation value at-risk. Journal of Derivatives,1996,4
  • 8Fallon W. Calculating value at-risk. working paper. Wharton Financial Institutions Center. University of Pennsyvania,1996
  • 9Hill B. A simple general approach to inference about the tail of a distribution. The Annals of Mathematics Statistics. 1975,3:1163-1174
  • 10Hall P. Using the bootstrap to estimate mean square error and select smoothing parameters in non-parametric problems. Journal of Multivariate Analysis, 1990, 32:177-203

共引文献43

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部