期刊文献+

双曲守恒律方程的一种熵相容格式 被引量:1

An Entropy-consistent Scheme for Hyperbolic Conservation Laws
下载PDF
导出
摘要 提出了一种求解双曲守恒律方程的熵相容数值通量。在熵守恒通量中添加一个二阶迎风项和一个三阶的差商项来保持熵稳定并且抵消解在跨过激波时所产生的激波强度立方倍的熵增,从而实现熵相容。新的数值通量能精确保持定常的接触间断、消除非物理的膨胀激波及负压力等现象。通过采用近年发展起来的WENO方法在单元交界面处进行高阶重构,得到高阶精度的熵相容格式。数值算例采用空间半离散格式,并结合显式三步三阶Runge-Kutta(RK3)方法进行时间推进。不同的算例结果表明,格式具有稳定性、高分辨率和无振荡性等特点。 An entropy-consistent flux is developed for the hyperbolic conservation laws.To preserve entropy-stability and offset the entropy production of the order of cube of the shock strength across the shock waves,a second-order upwind term and a third-order differential term are added to the entropy-conservation flux,so as to achieve entropy consistency.The new flux exactly preserves the stationary contact discontinuity and does not capture the unphysical rarefaction shock and negative pressure.By using WENO reconstruction at cell interfaces,a high order accurate entropy consistent scheme is adopted.Numerical experiments use the semi-discrete scheme with the explicit three-stage third-order Runge-Kutta(RK3) time evolution.Several different numerical examples were implemented with the entropy consistent scheme.The results showed that the scheme is stable,high resolution and non-oscillation.
机构地区 长安大学理学院
出处 《航空计算技术》 2012年第5期28-32,共5页 Aeronautical Computing Technique
基金 国家自然科学基金项目资助(11171043) 中央高校基本科研业务费项目资助(CHD2012TD015)
关键词 熵相容格式 双曲守恒律 WENO重构 entropy-consistent conservation laws WENO reconstruction
  • 相关文献

参考文献9

  • 1Dafermos C. Hyperbolic Conservation Laws in Continuum Physics [ M ]. Berlin: Springer, 2002.
  • 2Lax P D. Weak Solutions of Non- linear Hyperbolic Equations and Their Numerical Computations [ J ]. Comm. Pure Appl. Math, 1954,7 : 159 - 193.
  • 3Lax P D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves [ C ]. V. 11 of SIAM Regional Conference Lectures in Applied Mathematics, 1973.
  • 4Roe P L. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes [ J ]. J Comput Phys, 1994,115 : 200 -212.
  • 5Tadmor E. The Numerical Viscosity of Entropy Stable Schemes for Systems of Conservation Laws [ J]. Math Comp, 1987,49 : 91 - 103.
  • 6Ismail F, Roe P L. Affordable, Entropy- consistent Euler Flux Functions II : Entropy Production at Shocks [ J ]. J Comput Phys, 2009,228 : 5410 - 5436.
  • 7Gottlieb S,Shu C W,Tadmor E. High Order Time Discretiza- tions with Strong Stability Properties [ J ]. SIAM Review, 2001,43:89 - 112.
  • 8Liu XuDong, Osher S, Chan T. Weighted Essentially Non- os- cillatory Schemes [ J ]. J Comput Phys, 1994,115 : 200 - 212.
  • 9Roe P L. Entropy Conservative Schemes for Euler Equations [ R ]. Talk at HYP 2006, Lyon, France.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部