期刊文献+

含主动耳蜗的人耳传声有限元模拟 被引量:8

FE simulation of sound transmission in human ear with an active cochlea model
下载PDF
导出
摘要 采用外耳道、中耳、简化耳蜗耦合的有限元模型,模拟声压从外耳道传入耳蜗和耳蜗液体驱动基底膜振动的过程。耳蜗模型包含正交各向异性材料基底膜并考虑尺寸和材料性质沿长度的变化,在对柯蒂氏器进行微观力学分析的基础上,运用前馈模型实现耳蜗的主动机制。提出外耳道声音激励与耳蜗主动机制联合作用下中耳和耳蜗响应计算方法,结果表明:该模型实现了外耳道激励下基底膜位移与激励水平的非线性、基底膜频率选择等特性的模拟。 A finite element model integrating ear canal, middle ear and cochlea was established and used to simulate a process of sound transmission from ear canal to cochlea, and cochlear fluid driving basilar membrane to vibrate. The cochlea model included an orthotropic basilar membrane with dimensional and material property variation along its length. Based on the micro-mechanic analysis of organ of Corti, a feed-forward mechanism was used to realize the cochlea active amplifier features. A numerical method, combining ear canal stimuli and cochlea active mechanism, was developed to compute the responses in the middle ear and active cochlea. The results showed that the model achieves basilar membrane response level compression and frequency selectivity characteristics with respect to ear canal sound stimuli.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第21期41-45,共5页 Journal of Vibration and Shock
基金 国家自然科学基金(30870605)
关键词 耳蜗 基底膜 柯蒂氏器 耳蜗主动机制 cochlea basilar membrane organ of Corti cochlea active mechanism
  • 相关文献

参考文献22

  • 1Kemp D T. Stimulated acoustic emissions from within the human auditory system [J]. J. Acoust. Soc. Am,1978,64 (5):1386-1391.
  • 2Weiss T F. Bidirectional transduction in vertebrate hair cells:A mechanism for coupling mechanical and electrical processes [J].Hearing Research,1982,7 (3) : 353 - 360.
  • 3Davis H. An active process in cochlear mechanics [J]. Hearing Research,1983,9(1): 79 – 90.
  • 4Neely S T, Kim D O. A model for active elements in cochlear biomechanics [J]. J. Acoust. Soc. Am,1986, 79(5) :1472-1480.
  • 5Kanis L J, de Boer E. Self-suppression in a locally active nonlinear model of the cochlea:A quasilinear approach [J]. J. Acoust. Soc. Am,1993,94 (6) : 3199 – 3206.
  • 6Lim K M, Steele C R. Response suppression and transient behavior in a nonlinear active cochlear model with feed–forward [J]. International Journal of Solids And Structures,2003,40: 5097 – 5107.
  • 7Fukazawa T,Tanaka Y. Spontaneous otoacoustic emissions in an active feed-forward model of the cochlea [J]. Hearing Research,1995,85:135 – 143.
  • 8Geisler C D, Sang C. A cochlear model using feed-forward outer-hair-cell forces [J]. Hearing Research,1995,86:132 – 146.
  • 9刘后广,塔娜,饶柱石.新型人工中耳压电振子设计[J].振动与冲击,2011,30(7):112-115. 被引量:8
  • 10刘迎曦,李生,孙秀珍.人耳传声数值模型[J].力学学报,2008,40(1):107-113. 被引量:42

二级参考文献67

  • 1刘迎曦,李生,孙秀珍.人耳鼓膜病变数值分析[J].医用生物力学,2008,23(4):275-278. 被引量:15
  • 2郭继周,汪若峰,刘莎,赵丽萍,李玉珍.植入式人工中耳听器-GWⅠ型的研制及动物实验研究[J].耳鼻咽喉(头颈外科),1994,1(4):237-240. 被引量:6
  • 3Gan Rongzhu,Feng Bin,Sun QunLi.Three-dimensional finite element modeling of human ear for sound transmission[J].Ann Biomed Eng,2004,32:847-859.
  • 4Gan Rongzhu,Wang Xuelin.Multifield coupled finite element analysis for sound transmission in otitis media with effusion[J].J Acoust Soc Am,2007,122:3527-3538.
  • 5Koike T,Weda H.Modeling of the human middle ear using the finite-element method[J].J Acoust Soc Am,2002,111:1306-1317.
  • 6Bohnke F,Arnold W.3D-finite element model of the human cochlea including fluid-structure couplings[J].ORL,1999,61:305-310.
  • 7Lim KM,Steele CR.A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method[J].Hear Bes,2002,170:190-205.
  • 8Andoh M,Wada H.Prediction of the characteristics of two typos of pressure waves in the cochlea:Theoretical considerations[J].J Acoust Soe Am,2004,116:417-425.
  • 9Watts L_The mode-coupling Liouville-Green approximation for a two-dimensional cochlear model[J].J Acoust Soc Am,2000,108:2266-2271.
  • 10Steel CR,Lim K-M.Cochlear model with three dimensional fluid,inner sulcus and food-forward mechanism[J].Audiol Neuro-Otol,1999,4:197-203.

共引文献55

同被引文献122

引证文献8

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部