期刊文献+

一种多特征融合的小波变换图像配准方法 被引量:1

A WAVELET TRANSFORMS IMAGE REGISTRATION METHOD WITH MULTI-FEATURE FUSION
下载PDF
导出
摘要 为了满足图像配准对鲁棒性、准确性和效率的要求,提出一种多特征融合的小波变换图像配准方法。该方法首先提取H-L特征点,边缘稳定点以及相关性等特征,对这些特征构造特征空间,用模糊集求解特征点距,之后用多约束准则进行处理,用小波方法剔除匹配对中的错误匹配,最后对结果进行分析。实验结果表明该配准方法能够对不同分辨率、不同旋转角度的图像精确地实现配准,同时配准的时间也大幅减少,具有精度高、速度快、抗噪性能良好等优点。 In order to meet the requirements of image registration in robustness,accuracy and efficiency,this paper proposes a wavelet transform image registration method with multi-feature fusion.The method first extracts the characteristics including H-L feature point,edge stable point and correlation,etc.,constructs feature space on these characteristics,and uses fuzzy sets to solve the characteristic dot pitch;then it uses the multiple constraints criterion to process and the wavelet method to cull the error matches in matching pair.At last,the results are analysed.Experimental results show that the registration method can make accurate registration to the images with different resolution and rotation angle;at the same time,the registration time is significantly reduced as well.The method has the advantages of high precision,fast speed and good noise immunity.
出处 《计算机应用与软件》 CSCD 北大核心 2012年第11期75-78,107,共5页 Computer Applications and Software
基金 国家自然科学基金项目(61003246) 乐山师范学院科研创新团队建设计划资助
关键词 H-L特征点 特征匹配 边缘稳定点 图像配准 相关性 H-L feature point Feature matching Edge stable point Image registration Correlation
  • 相关文献

参考文献11

二级参考文献76

共引文献194

同被引文献20

  • 1Scharstein D,Szeliski R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1/2/3):7-42.
  • 2De-Maeztu L,Villanueva A,Cabeza R.Stereo matching using gradient similarity and locally adaptive support-weight[J].Pattern Recognition Letters,2011,32(13):1643-1651.
  • 3Boykov Y,Veksler O,Zabih R.A Variable Window Approach to Early Vision[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1998,20(12):1283-1294.
  • 4Veksler O.Stereo Correspondence with Compact Windows via Minimum Ratio Cycle[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2002,24(12):1654-1660.
  • 5Veksler O.Fast Variable Window for Stereo Correspondence using Integral Images[C]//IEEE Conference on Computer Vision and Pattern Recognition,2003,1:556-561.
  • 6Bobick A F,Intille S S.Large Occlusion Stereo[J].International Journal of Computer Vision,1999,33(3):181-200.
  • 7Kang B,Szeliski R,Jinxjang C.Handling Occlusions in Dense MultiView Stereo[C]//IEEE Conference on Computer Vision and Pattern Recognition,2001,1:103-110.
  • 8Tao H,Sawhney H S,Kumar R.A Global Matching Framework for Stereo Computation[C]//Int’l Conf.of Computer Vision,2001,1:532-539.
  • 9Tombari F,Mattoccia S,Di Stefano.Segmentation-based adaptive support for accurate stereo correspondence[C]//PSIVT,2007.
  • 10Yoon K J,Kweon I S.Adaptive support-weight approach for correspondence search[J].PAMI,2006,28(4):650-656.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部