期刊文献+

基于经验模态分解NCC特征选择的高光谱图像分类算法 被引量:2

Hyperspectral images classification based on NCC feature selection of empirical mode decomposition
下载PDF
导出
摘要 采用非线性相关系数(nonlinear correlation coefficient,NCC)进行经验模态分解后的特征选择,通过图像特征(内固模态函数和图像趋势)的非线性相关系数进行特征选择(NCC-Feature Selection),进一步提出了基于非线性相关系数经验模态特征选择的高光谱图像分类算法(2D-EMD-NCC-SVM)。仿真结果证实,算法可选择出可分性强、信息量大的高光谱图像特征,提高高光谱图像的分类精度和分类速度。 In remote sensing classification,empirical mode decomposition improves the performance of support vector machine(SVM) classification.However,there have been few researches on feature selection after empirical mode decomposition.A method of feature selection for empirical mode decomposition based on nonlinear correlation coefficient(NCC) is proposed,and SVM classification based on NCC feature selection of empirical mode decomposition for hyperspectral images is proposed(2D-EMD-NCC-SVM).Experimental results show that NCC-feature selection can select features with strong separability and rich information,and 2D-EMD-NCC-SVM can significantly increase the classification accuracy and the classification speed.
作者 张敏 沈毅
出处 《中国科技论文》 CAS 北大核心 2012年第10期799-803,共5页 China Sciencepaper
基金 高等学校博士学科点专项科研基金资助项目(20092302110037) 国家自然科学基金资助项目(60975009)
关键词 高光谱图像 经验模态分解 支持向量机 非线性相关系数 特征选择 分类 hyperspectral images empiricalmodedecomposition supportvectormachine nonlinearcorrelationcoefficient feature selection classification
  • 相关文献

参考文献14

  • 1Dante M, Bn.J.,c L, Vescovo L. "Ihe Role of -nal resolution classifier cnplexity in the analysis of hypev4x h'nages of forest areas [J]. Ren,ote Ss Envi 2009, 113(11):2345-2355.
  • 2Choe E, Meet F V D, Ruitebeek F V. Magping of heavy na] pollution h stream sedimerds using 'nbined geochemistTy, field speamscoW, and hypepeOr sensing: a case study of the rodaktui mmktg SE Slam [J]. Remote Sere Enviror 2008, 112(7): 3222-3233.
  • 3He Lin, P Quarl, Di Wei. Anomaly do.eclion m h ,ery t:d on maximum entropy and eslml [J]. Pama'n Rema Lett, 2008, 29(9): 1392-1403.
  • 4Det3 R Ruilenbeek FJ A, Van der Meer F D. Optinual field sampling for tatgel uskg data [J]. Remote Sens Enviror 2005, 99(4): 373-386.
  • 5CamlMalls G B L. Kernel-based melhoRs lbr hyperspeclral image classification [J]. IEEE Trs Geosci Sts, 2005, 43(6): 1351-1362.
  • 6wi vector [J]. IEEE Trans Cosci Ro 2004, 42(8): 1778-1790.
  • 7CarrffValis C Gomcg-Chova L, Mmoz-Mari J, et al. Cosite kernels tbr h image classification [J]. IEEE Geosci P,cx Sens L 206, 3( 1 ): 93-97.
  • 8Demir B, S. Empkical rnc dect:mlxifion of hypevslx:caal inmg | suplx veOor machine classification [.I]. IEEE Trans i Remote Serts, 2010, 48:4071-4084.
  • 9l)anh" 13, Er tiink S, K. H in'rage classificat using denoLsing of intrinsic mode fi.mcliom [.1]. IEEE Geosci Remote Sens Letl, 2011,8: 220-224.
  • 10Hung N E, Shen 2]aeng, Lo S R. The enpirieal mode decomlxition arti lhe ttit slxn for nalmr axl r,ary ame ses analysis [C] // Proceeding of Royal Society. Lond Royal Society Publishing, 1998, 454: 903-995.

二级参考文献15

  • 1谌德荣,陶鹏,张立燕,范宁军.基于区域特征光谱的自组织特征映射神经网络高光谱图像主成分提取方法[J].宇航学报,2007,28(6):1689-1692. 被引量:3
  • 2金晶,王强,沈毅.Registering multiple medical images using the shared chain mutual information[J].Chinese Optics Letters,2007,5(7):389-392. 被引量:1
  • 3Mathieu F,Jón A B,Jocelyn C,et al.Spectral and spatial clas-sification of hyperspectral data using SVMs and morphologicalprofiles. IEEE Transactions on Geoscience and Remote Sens-ing . 2008
  • 4Santiago V F,,Vidya M.Improving hyperspectral image classifi-cation using spatial preprocessing. IEEE Geoscience and Re-mote Sensing Letters . 2009
  • 5Devis T,Fabio P,Mikhail K,et al.Classification of very highspatial resolution imagery using mathematical morphology andsupport vector machines. IEEE Transactions on Geoscienceand Remote Sensing . 2009
  • 6GonzalezR C,WoodsR E.Digital image processing. . 2008
  • 7ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C/[OL] .
  • 8Gustavo C V,Luis G C,Jordi M M,Joan V F,Javier C M.Composite kernels for hyperspectral image classifica-tion. IEEE Transactions on Geoscience and Remote Sens-ing Letters . 2006
  • 9Chang, C.I,Du, Q.Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery. IEEE Transactions on Geoscience and Remote Sensing . 2004
  • 10Melgani F,Bruzzone L.Classification of Hyperspectral Remote Sensing Images with Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing . 2004

共引文献14

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部