期刊文献+

FVM-MD耦合算法中非周期性边界条件的研究

Investigation of Non-Periodic Boundary Condition Used in FVM-MD Coupling Simulations
原文传递
导出
摘要 本文研究了广泛应用于耦合算法中的非周期性边界条件(NPBC),获得了耦合算法中粒子区边界附近原子所受边界力与边界处局部密度和温度的关系。基于此,本文拟合得到了边界力与局部密度和温度的关系式,与平衡态分子动力学模拟结果的对比验证了拟合公式的可靠性。最后本文将边界力的拟合公式应用到耦合算法中求解Poiseuille流动,结果表明粒子区边界附近的密度振荡大大减小,且速度和温度分布曲线能很好地与纯MD方法结果吻合。 This paper presents an investigation of the non-periodic boundary condition (NPBC) which is often used in multiscale molecular-continuum simulations. The relationship between the boundary force exerted by the atoms outside the atomistic domain and the density and temperature at the boundary is studied. Fitting formulas of the boundary force as function of the fluid state has been proposed based on the relationship. The accuracy of fitting formulas is verified by the equilibrium MD simulation results. Poiseuille flow is then simulated using the proposed fitting formulas. The elimination of density oscillation near the boundary of atomistic region further confirm the correctness of our fitting formulas.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第12期2180-2184,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.51136004 No.50636050) 国家863项目(No.2009AA01A131)
关键词 耦合 非周期性边界 边界力 有限容积法 分子动力学模拟方法 multiscale coupling non-periodic boundary boundary force finite volume method molecular dynamics
  • 相关文献

参考文献16

  • 1O’Connell S T, Thompson P A. Molecular Dynamics-Continuum Hybrid Computations: A Tool for StudyingComplex Fluid Flows [J]. Phys Rev E, 1995, 52(6): R5792.
  • 2Flekkoy E G, Wagner G, Feder J. Hybrid Model for Com-bined Particle and Continuum Dynamics [J]. EurophysLett, 2000,52(3): 271-276.
  • 3Delgado-Buscalioni R, Coveney P V. Continuum-ParticleHybrid Coupling for Mass, Momentum, and EnergyTransfers in Unsteady Fluid Flow [J]. Phys Rev E, 2003,67(4): 046704.
  • 4Nie X B, Chen S Y, E W N, et al. A Continuum andMolecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow [J]. J Fluid Mech, 2004, 500: 55-64.
  • 5Tao W Q, He Y L. Recent Advances in Multiscale Simu-lation of Heat Transfer and Fluid Flow Problems [J]. ProgComput Fluid Dy, 2009, 9(3/4/5): 150-157.
  • 6Werder T, Walther J H, Koumoutsakos P. HybridAtomistic-Continuum Method for the Simulation of DenseFluid Flows [J]. J Comput Phys, 2005, 205(1): 373-390.
  • 7Kotsalis E M, Walther J H, Koumoutsakos P. Controlof Density Fluctuations in Atomistic-Continuum Simu-lations of Dense Liquids [J]. Phys Rev E, 2007, 76(1):016709.
  • 8Huang Z G, Guo Z N, Yue T M, et al. Non-PeriodicBoundary Model With Soft Transition in Molecular Dy-namics Simulation [J]. Europhys Lett, 2010, 92(5): 50007.
  • 9Matteoli E, Ali Mansoori G. A Simple Expression for Ra-dial Distribution Functions of Pure Fluids and Mixtures[J]. J Chem Phys, 1995, 103(11): 4672-4677.
  • 10Bamdad M, Alavi S, Najafi B, et al. A New Expression forRadial Distribution Function and Infinite Shear Modulusof Lennard-Jones Fluids [J]. Chem Phys, 2006, 325(2/3):554-562.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部