期刊文献+

纳米复合隔热材料辐射与导热耦合传热 被引量:4

Combined Radiation and Conduction Heat Transfer in Nanocomposite Insulation Materials
原文传递
导出
摘要 气凝胶是一种纳米多孔隔热材料,但力学强度差,通常添加纤维来提高材料的力学性能。建立基于光学厚的导热与辐射耦合传热模型,揭示纤维种类对气凝胶纤维复合材料的隔热影响机制。结果表明,高温下石英纤维b的消光系数最大,抑制辐射能力最强,钠钙玻璃纤维抑制辐射能力最差。纤维的选择对提高材料的隔热性能有显著的影响。纤维复折射系数平均值越大,同时围绕平均值向下波动越小,其消光系数越大。本文研究的4种复合材料,加入石英纤维b的复合材料的高温整体热导率最低。 The silica aerogel is a nanoporous super thermal insulation material with weak me- chanical strength. The fibers are usually filled into the aerogel to strengthen the material. A combined conduction and radiation heat transfer model based on the optically thick assumption was developed to investigate the effects of the fiber species effects on the heat transfer through the fiber-loaded aerogel composite. The results show that the silicon glass-b has the largest ex- tinction coefficient for best suppressing the radiation at higher temperatures while the soda lime silica fiber has the smallest extinction coefficient. The selection of proper fiber is important for improving the thermal insulation. The fiber, which has the largest complex refractive index with smallest fluctuations, has the largest extinction coefficient. For the 4 species of fibers in this study, the silicon glass-b is optimum for best reducing the total thermal conductivity for higher temperatures.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第12期2185-2189,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.21176133)
关键词 气凝胶 纤维 消光系数 辐射 整体热导率 silica aerogel fiber extinction coefficient radiation total thermal conductivity
  • 相关文献

参考文献13

  • 1Zeng S Q, Hunt A, Greif R. Transport Properties of Gas inSilica Aerogel [J]. Journal of Non-Crystalline Solids, 1995,186: 264-270.
  • 2Deng Z S, Wang J, Wu A M, Shen J, Zhou B. HighStrength SiO2 Aerogel Insulation [J]. Journal of Non-Crystalline Solids, 1998, 225: 101-104.
  • 3Wang J, Kuhn J, Lu X. Monolithic Silica Aerogel Insu-lation Doped With TiO2 Powder and Ceramic Fibers [J].Journal of Non-Crystalline Solids, 1995, 186: 296-300.
  • 4Zeng J S Q, Greif R, Stevens P, Ayers M, Hunt A. Effec-tive Optical Constants n and k and Extinction Coefficientof Silica Aerogel [J]. Journal of Material Research, 1996,11(3): 687-693.
  • 5Kamdem H T T, Baillis D D. Reduced Models for Radia-tive Heat Transfer Analysis through Anisotropic FibrousMedium [J]. ASME Journal of Heat Transfer, 2010, 132:072703.
  • 6Dombrovsky L A, Randrianalisoa J H,Baillis D. InfraredRadiative Properties of Polymer Coatings Containing Hol-low Microspheres [J]. International Journal of Heat andMass Transfer, 2007, 50: 1516-1527.
  • 7Lee S C, Cunnington G R. Conduction and RadiationHeat Transfer in High-Porosity Fiber Thermal Insulation[J]. Journal of Thermophysics and Heat Transfer, 2000,14(2): 121-136.
  • 8Daryabeigi K. Heat Transfer in High-Temperature FibrousInsulation [J]. Journal of Thermophysics and Heat Trans-fer, 2003,17(1): 10-20.
  • 9Zhao S Y, Zhang B M, He X D. Temperature and PressureDependent Effective Thermal Conductivity of Fibrous In-sulation [J]. International Journal of Thermal Sciences,2009, 48: 440-448.
  • 10Wei G S, Liu Y S, Zhang X X, Yu F, Du X Z. ThermalConductivities Study on Silica Aerogel and its CompositeInsulation Materials [J]. International Journal of Heat andMass Transfer, 2011,54: 2355-2366.

同被引文献13

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部