期刊文献+

基于FCM聚类的气化炉温度多模型软测量建模 被引量:14

A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering
下载PDF
导出
摘要 水煤浆气化是煤炭资源高效清洁利用的重要技术。气化炉反应温度是关系装置能否长周期安全稳定运行的关键参数,但是热电偶在高温、高压和气固物流冲刷环境下,使用寿命有限。本文以一多喷嘴对置式水煤浆气化炉为研究对象,在多模型建模方法的基础上,以数据点间的相似程度作为多模型子区间的划分手段,结合最小二乘支持向量机建立了基于模糊C均值聚类的气化炉温度软测量模型。实际工业运行数据验证结果表明,该软测量模型拟合精度较高,模型泛化能力较强。 Coal-water slurry gasification is a very important technology in developing clean and efficient use of coal.Gasifier furnace temperature is one of the key variables which is closely related to the process safety,stability and long-term operation of the gasification.Thermocouple elements are easily ruined under complex industrial condition with high temperature,high pressure and high flow erosion.Thus it is difficult to maintain a long period of work.In this paper,aiming at an opposed multi-burner coal-water slurry gasification process,adopting fuzzy C-means clustering based multi-modeling method and least square support vector machines,a gasifier temperature soft sensor model is established.The actual operation's validation results show that the predictive temperature of the furnace based on this soft sensor model has a pretty good predictive precision and generalization ability.
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第12期3951-3955,共5页 CIESC Journal
基金 国家自然科学基金项目重点基金(U1162202) 国家自然科学基金项目(61174118) 国家高技术研究发展计划项目(2012AA040307) 浙江省公益科技项目(2011C21077) 上海市基础研究重点项目(10JC1403400)~~
关键词 水煤浆气化 模糊C均值聚类 最小二乘支持向量机 多模型 软测量建模 coal-water slurry gasification fuzzy C-means clustering least square support vector machines multi-modeling soft sensor modeling
  • 相关文献

参考文献11

  • 1高恒,刘宏建.煤气化技术现状、发展及产业化应用[J].煤化工,2009,37(1):37-39. 被引量:31
  • 2Kaneko H,Arakawa M,FunatsuK. Development of a new soft sensor method using independent component analysis and partial least squares [J]. AIChE] oumal,2009,55 (1): 87-98.
  • 3Gonzaga J,Meleiro L,Kiang C,et al. ANN-based soft sensor for real-time process monitoring and control of an industrial polymerization process [J]. Com户uters & Chemical Engineering,2009,33(1): 43-49.
  • 4Fujiwara K,Kano M,Hasebe S,et al. Soft-sensor development using correlation-based just-in-time modeling [J]. AIChE]oumal,2009,55 (7): 1754-1765.
  • 5王新刚,侍洪波.德士古气化炉炉温软测量建模及其工程实现[J].化工自动化及仪表,2006,33(3):59-63. 被引量:5
  • 6Li lie. Zhong Weimin. Cheng Hui. et al. A data-driven soft sensor modeling for furnace temperature of opposed multi-burner gasifier/ /Proceeding of the 7th International Conference on Natural Computation [C]. Shanghai. 2011.
  • 7王永红,李杰,钟伟民.水煤浆气化炉温智能软测量建模[J].自动化仪表,2012,33(1):56-58. 被引量:6
  • 8Bezdek 1 C. Pattern Recognition with Fuzzy Objective Function Algorithms [MJ. New York: Plenum Press. 1981.
  • 9周立芳,张赫男.基于聚类多模型建模的多模态预测控制[J].化工学报,2008,59(10):2546-2552. 被引量:9
  • 10Li lie (李杰). Application research on the intelligent soft sensor modeling for the coal-water slurry gasifier [D]. Shanghai: East China University of Science and Technology. 2012.

二级参考文献27

共引文献47

同被引文献134

引证文献14

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部