期刊文献+

采用KPCA特征提取的近红外煤炭发热量预测模型 被引量:23

NIRS prediction model of calorific value of coal with KPCA feature extract
下载PDF
导出
摘要 近红外光谱分析技术通过搭建基于GA-BP神经网络方法的定量分析模型,实现煤炭发热量的快速评估。为了提高模型的学习速度和精度,必须对光谱信息进行数据处理。该过程属于复杂的非线性问题,经典的线性主成分分析方法具有一定的局限性,因此采用了一种基于多项式核主成分分析特征提取方法。通过分析主成分的特征值筛选异常样本。实验结果表明,该方法提取的特征信息主成分集中度高、降维效果明显、与输出变量间的相关性好,且能够准确判断出异常样本,大幅度提高了模型的准确性,为近红外煤质分析模型提供了一种分析速度快、准确率高的有效数据处理方法。 The near-infrared spectroscopy(NIRS)with GA-BP neural network model was used for rapid prediction of gross calorific value of coal.The prediction model was non-linear,so the classical linear principal component analysis(LPCA)method was not applicable for processing spectral data.The nonlinear polynomial kernel principal component analysis(P-KPCA)method was proposed for extracting spectral feature and filtering abnormal samples in this paper.The extracted principal components had high feature concentration,obvious dimension reduction effect,and good correlation with output variable.After eliminating the abnormal spectra,prediction accuracy was greatly improved.The results showed that P-KPCA provided effectively processed spectral data for the rapid prediction model.
作者 雷萌 李明
出处 《化工学报》 EI CAS CSCD 北大核心 2012年第12期3991-3995,共5页 CIESC Journal
基金 高等学校博士学科点专项科研基金项目(20110095110011)~~
关键词 近红外光谱分析技术 核主成分分析 GA-BP神经网络模型 煤炭发热量 NIRS KPCA GA-BP neural network model calorific value of coal
  • 相关文献

参考文献5

二级参考文献14

  • 1ANDRES J M, BONA M T. Analysis of Coal by Diffuse Reflectance Near-infrared Spectroscopy [J].Analytica Chimica Acts, 2005,535 (1-2) : 123-132.
  • 2Bona M T, Andres J M. Reflection and transmission mid-infrared spectroscopy for rapid determination of coal properties by multivariate analysis [J]. Talanta ,2007,74 (4) :998 - 1007.
  • 3Li Zhongsheng,Peter M F, Rintoul L, et al. Application of attenuated total reflectance micro-Fourier transform infrared (ATR-FFIR) spectroscopy to the study of coal macerals : examples from the Bowen Basin, Australia [ J ]. International Journal of Coal Geology, 2006,70( 1 -2) :87 -94.
  • 4Bona M T, Andres J M. Coal analysis by diffuse reflectance near-infrared spectroscopy: hierarchical duster and linear discriminant analysis[J]. Talanta,2007,72(4) :1423 - 1431.
  • 5Wang Bin, Liu Guoliang, Dou Ying, et al. Quantitative analysis of diclofenac sodium powder via near-infrared spectroscopy combined with artifcial neural network [J]. Pharmaceutical and Biomedical Analysis ,2009,50 ( 2 ) : 158 - 163.
  • 6Andres J M,Bona M T. Analysis of coal by diffuse reflectance near-infrared spectroscopy [ J ]. Analytiea Chimica A cta, 2005,535 ( 1 - 2 ) : 123 - 132.
  • 7Andres J M,Bona M T. ASTM clustering for improving coal analysis by near-infrared spectroscopy [ J ]. Talanta, 2006,70 ( 4 ) : 711 - 719.
  • 8Bona M T,Andres J M. Application of chemometric tools for coal classification and multivariate calibration by transmission and drift mid-infrared spectroscopy[J]. Analytica Chimica Acta,2008,624( 1 ) :68 -78.
  • 9段军彪,景旭,上官周平.基于遗传算法的BP网络在小流域侵蚀量预测中的应用[J].西北农业学报,2008,17(2):317-320. 被引量:7
  • 10顾志荣,张德强.红外快速煤质分析仪应用探讨[J].煤质技术,2008,23(2):24-27. 被引量:4

共引文献41

同被引文献188

引证文献23

二级引证文献129

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部