期刊文献+

基于RBF神经网络的认知无线电认知引擎设计 被引量:1

Design of Cognitive Engine Based on Radial Basis Function Neural Network in Cognitive Radio
下载PDF
导出
摘要 认知无线电(CR)是一种智能无线通信系统,它能根据环境变化、业务需求动态调整参数,提高系统性能,其核心技术是认知引擎的设计。认知引擎可引入人工智能领域的推理与学习方法来实现CR的感知、自适应与学习能力。为适应变化的无线环境和用户需求,提出基于径向基神经网络(RBF)的CR认知引擎设计方法,该法通过对经验知识和环境的学习,重配置通信参数,以达到资源合理分配,提高系统性能。该引擎由两层RBF神经网络组成,外层神经网络学习全局属性,内层神经网络学习局部属性,以解决路由协议及局部参数的学习配置。在训练RBF神经网络学习模型后,根据定义的两个测试基准函数,评估模型性能,仿真验证了该学习模型的有效性,且能够有效实现CR学习重构。 Cognitive radio (CR) is an intelligent wireless communication system, which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service (Qos). The core technology for CR is the design of cognitive engine, which can introduce reasoning and learning methods to achieve the perception, adaptation and learning. Considering the dynamical environment and demands, a scheme of cognitive engine was proposed based on the radial basis function (RBF) neural network. The scheme could study from experience and environment to reconfigure communication parameters and improve system performance. The cognitive engine was composed of two RBF_NN layers to solve the learning configurations of routing protocol and local parameters. The outer layer learned the global properties, while the inner layer learned the local attributes. After training, the learning model performance was evaluated according to two defined benchmark functions. The simulation results show that the learning model is effective and the cognitive engine can effectively achieve the study and reconfiguration function.
出处 《系统仿真学报》 CAS CSCD 北大核心 2012年第12期2489-2495,共7页 Journal of System Simulation
基金 国家自然科学基金项目(61072138) 国家973计划项目(2009CB320403)
关键词 认知无线电 拓扑因子 神经网络 认知引擎 cognitive radio topology factor neural networks cognitive engine
  • 相关文献

参考文献16

  • 1杨春刚,李建东,李维英,陈东,陈丹.认知无线电中基于非合作博弈的功率分配方法[J].西安电子科技大学学报,2009,36(1):1-4. 被引量:20
  • 2T W Rondeau. Application of artificial intelligence to wireless communications [D]. Blacksburg, VA, USA: Electrical and Computer Engineering, Virginia Polytechnic Institute & State University, 2007-10-10.
  • 3S Chen, A M Wyglinski. Efficient spectrum utilization via cross-layer optimization in distributed cognitive radio networks [J]. Computer Communications (S0140-3664), 2009, 32(18): 1931-1943.
  • 4赵知劲,彭振,郑仕链,徐世宇,楼才义,杨小牛.基于量子遗传算法的认知无线电频谱分配[J].物理学报,2009,58(2):1358-1363. 被引量:56
  • 5Demestichas P, Katidiotis A, Tsagkaris K A, et al. Enhancing channel estimation in cognitive radio systems by means of Bayesian networks [J]. Wireless personal communications (S1572-834X), 2009, 49(1): 87-105.
  • 6K Tsagkaris, A Katidiotis, P Demestichas. Performance evaluation of artificial neural network-based learning schemes for cognitive radio systems [J]. Computers & Electrical Engineering (S0045-7906), 2010, 31(3): 518-535.
  • 7K Tsagkaris, A Katidiotis, P Demestichas. Neural network-based learning schemes for cognitive radio systems [J]. Computer Communications (S0140-3664), 2008, 31(14): 3394-3404.
  • 8N Baldo, M Zorzi. Learning and adaptation in cognitive radios usingneural networks [C]//2008 5th IEEE Consumer Communications and Networking Conference, CCNC. USA: IEEE, 2008: 998-1003.
  • 9M Hasegawa, T Takeda, T Kuroda, et al. Application of Higher Order Neural Network Dynamics to Distributed Radio Resource Usage Optimization of Cognitive Wireless Networks [M]// Lecture Notes in Computer Science. Berlin, Heidelberg, New York: Springer, 2009, 5506 PART 1: 851-858.
  • 10B Russell. Learning-Based Route Management in Wireless Ad Hoc Networks [D]. USA: The State University of New Jersey, 2008.

二级参考文献26

共引文献74

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部