期刊文献+

基于情感向量空间模型的歌曲情感标签预测模型 被引量:7

Sentiment Vector Space Model Based Music Emotion Tag Prediction
下载PDF
导出
摘要 音乐的情感标签预测对音乐的情感分析有着重要的意义。该文提出了一种基于情感向量空间模型的歌曲情感标签预测算法,首先,提取歌词中的情感特征词构建情感空间向量模型,然后利用SVM分类器对已知情感标签的音乐进行训练,通过分类技术找到与待预测歌曲情感主类一致的歌曲集合,最后,通过歌词的情感相似度计算找到最邻近的k首歌曲,将其标签推荐给待预测歌曲。实验发现本文提出的情感向量空间模型和"情感词—情感标签"共现的特征降维方法比传统的文本特征向量模型能够更好地提高歌曲情感分类准确率。同时,在分类基础上进行的情感标签预测方法可以有效地防止音乐"主类情感漂移",比最近邻居方法达到更好的标签预测准确率。 Music emotion tag prediction algorithm plays an important role in music sentiment analysis. This paper presents a sentiment vector space model (s-VSM) based music emotion tag prediction algorithm. Firstly, we extract the emotion words to build the sentiment vector space model. Then, we use SVM classifier to generate training sampies, and to get the collection which shares the same main emotion category with the predicted music. Finally, by finding the nearest k songs, we can get the emotion tag for recommendation. Experimental results show that s-VSM and the "emotional words-emotional label" co-occurrence based feature reduction method perform better than traditionally word-based vector space model in mood classification. Meanwhile, the emotion tag prediction based on the result of classification can effectively prevent the music "main mood drift", thus achieving better tag predict accuracy than k-nearest neighbors method.
出处 《中文信息学报》 CSCD 北大核心 2012年第6期45-50,58,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60673039 60973068) 国家社科基金资助项目(08BTQ025) 国家863高科技计划资助项目(2006AA01Z151) 教育部留学回国人员科研启动基金 高等学校博士学科点专项科研基金资助项目(20090041110002)
关键词 标签预测 特征降维 情感分类 情感向量空间模型 tag prediction feature reduction mood classification sentiment vector space model
  • 相关文献

参考文献14

  • 1X. Hu, J. S. Downie, C. Laurier, et al. The 2007 MIREX Audio Music Classification Task: Lessons Learned[C]//Proceedings of the International Conference on Music Information Retrieval, Vienna, Austria,2008:462-467.
  • 2夏云庆,杨莹,张鹏洲,刘宇飞.基于情感向量空间模型的歌词情感分析[J].中文信息学报,2010,24(1):99-103. 被引量:21
  • 3Hevner K, Expression in music: a discussion of experimental studies and theories[J]. J. Am. J. Psychiatry. 1936.:246-268.
  • 4Dan Liu, Lie Lu. Automatic mood detection from aeoustic music data[C]//Proceedings of the International Symposium on Music Information Retrieval, Baltimore, MD, USA, 2003: 81-87.
  • 5Ogihara M. Content based music similarity search and emotion detection[C]//Proceedings of 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Quebec, Canada, 2004:17-21.
  • 6Dan Yang, Won-Sook Lee. Music Emotion Identification from Lyrics[C]//Proceedings of llth IEEE Inter national Symposium on Multimedia, San Diego, Cana da, 2009: 624-629.
  • 7陈若涵.以音乐内容为基础的情绪分析及辨识[C]//2006 International Workshop on Computer Music and Audio Technology.台湾,2006
  • 8D. Yang, W. Lee. Disambiguating music Emotion Using Software Agents[C]//Proceedings of the 5th International Conference on Music Information Retrieval, Barcelona ,Spain, 2004: 52-58.
  • 9C. Laurier, J. Grivolla , P. Herrera. Multimodal Music Mood Classification Using Audio and Lyrics [C ]/ /Proceedings of the International Conference on Machine Learning and Applications, San Diego, Canada, 2008 : 688-693.
  • 10Y. H. Yang, Y. C. Lin, H. T. Cheng, et al. Toward multi-modal music emotion classification EC~// Proceedings of Pacific Rim Conference on Multimedia, Tainan,China, 2008 : 70-79.

二级参考文献19

  • 1林传鼎,无.社会主义心理学中的情绪问题——在中国社会心理学研究会成立大会上的报告(摘要)[J].社会心理科学,2006,21(1):37-37. 被引量:15
  • 2董振东(著),董强(著),胡光华.HowNet与意义的计算[J].国外科技新书评介,2006(12):8-9. 被引量:9
  • 3[5]Liu Tao,Zhu Bin,Sun Shouqian,et al.Music's affective computing model based on fuzzy logic[C]// Presented at WCICA2006.Dalian:[s.n.],2006:9477-9481.
  • 4[6]Zadeh L A.Fuzzy logic = computing with words[J].IEEE Transactions on Fuzzy Systems,1996,4 (2):103-111.
  • 5[7]Tang Yongchuan,Zheng Jiacheng.Linguistic modeling based on semantic similarity relation among linguistic labels[J].Fuzzy Sets and Systems,2006,157(12):1662-1673.
  • 6[8]Lawry J.A framework for linguistic modeling[J].Artificial Intelligence,2004,155 (1-2):1-39.
  • 7[10]马谋超.心理学中的模糊集分析[M].贵阳:贵州科技出版社,1993.
  • 8[11]Schoen M,Gatewood E L.The aesthetic attitude in music[J].Psycholog Monogr,1928,178(39):162-183.
  • 9[12]Hevner K.Expression in music:a discussion of experimental studies and theories[J].Psychological Review,1935,42(2):186-204.
  • 10[13]Hevner K.Experimental studies of the elements of expression in music[J].American Journal of Psychology,1936,48(2):246-268.

共引文献408

同被引文献67

  • 1CASEY M A,VELTKAMP R,GOTO M,et al.Content-based music information retrieval:current directions and future challenges[J].Proceedings of the IEEE,2008,96(4):668-696.
  • 2LIU Dan,LU Lie,ZHANG Hongiiang.Automatic mood detection from acoustic music data[C]// Proceedings of the International Symposium on Music Information Retrieval.Baltimore,MD,USA:The Johns Hopkins University Press,2003:81-87.
  • 3LI Tao,OGIHARA M.Content-based music similarity search and emotion detection[C]// Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing.Piscataway,NJ,USA:IEEE,2004:705-708.
  • 4YANG Dan,LEE W S.Music emotion identification from lyrics[CJ//Proceedings of the 1 lth IEEE International Symposium on Multimedia.Piscataway,NJ,USA:IEEE,2009:624-629.
  • 5SU Xiaoyuan,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques[J].Advances in Artificial Intelligence,2009,2009:1-19.
  • 6GOVINDARAJULU Z.Rank correlation methods[J].Technometrics,1992,34(1):108.
  • 7HUQ A,BELLO J P,ROWE R,et al.Automated music emotion recognition:a systematic evaluation[J].Journal of New Music Research,2010,39 (3):227-244.
  • 8Xu Hao,Wang Jingdong,Hua Xian-Sheng, et al. Tag refinement by regularized LDA[ C ]//Proceedings of the 17th ACM International Conference on Multimedia. New York : ACM, 2009 : 573 - 576.
  • 9Li Xirong, Snoek C G M, Worring M. Learning social tag rele- vance by neighbor voting[ J ]. IEEE Transactions on Multimedia, 2009, 11(7): 1310-1322.
  • 10Lee S, De Neve W, Ro Y M. Visually weighted neighbor voting for image tag relevance learning [ J ]. Multimedia Tools and Applica- tions, 2013.72(2) : 1363 -1386.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部