期刊文献+

基于计算机视觉的逃逸车辆识别系统设计与研究 被引量:27

Based on Computer Vision Escape Vehicle Identification System Design and Research
下载PDF
导出
摘要 针对在进行智能化的肇事逃逸车辆图像定位中,车辆行驶较为快速,车身所处背景变化存在较大的随机性。背景的颜色灰度等特征的变化非线性和突变性很强。很难建立较为稳定的车辆定位模型,定位准确性不高。为此,提出一种基于计算机动态图像处理技术的肇事逃逸车辆定位方法,通过进行动态性较强的图像处理手段,克服背景车辆快速变化的弊端,准确的定位行进中的车辆。实验表明,这种计算机动态视觉方法能够大幅提高肇事逃逸车辆图片的关键帧定位结果的准确性。 Aiming at the intelligent textbook hit-and-run images in positioning vehicles,vehicle relatively fast,the body in the background there exists much randomness in change.Background color gray characteristics of the nonlinear and change by the strong.It is difficult to create a stable vehicle locating model,positioning accuracy is not high.For this,put forward a kind of based on computer dynamic image processing technology textbook hit-and-run vehicle positioning method,the dynamic strong image processing method,to overcome the shortcomings of the rapidly changing background vehicles,accurate positioning the traveling vehicles.Experiments show that the computer dynamic visual method can greatly improve the spin-off vehicle picture key frames the accuracy of the locating results.
作者 许晓玲
出处 《科技通报》 北大核心 2012年第11期175-178,共4页 Bulletin of Science and Technology
基金 宁夏自然科学基金资助项目(NZ1026)
关键词 肇事逃逸 计算机视觉 车辆定位 escapes computer vision vehicle positioning
  • 相关文献

参考文献4

  • 1T Bray,J Paoli,C M Sperberg'-McQueen. Extensible Markup Language (XML)I.0 (Second Edition)[M].W3C Recommendati-on. October 2000:21-24.
  • 2S Abiteboul,P Bnueman,D Suciu.Data on the Web [M]. Morgan Kaufmann Publishers. 2000:89-93.
  • 3Charles X. Ling, Qiang Yang, Jianning Wang and Shichao Zhang. Decision Trees with Minimal Costs [C]//. Proceedings of 2004 International Conference on Machine Learning (ICML'2004), 2004.
  • 4陶剑文.一种分布式Web日志挖掘系统的设计与实现[J].计算机仿真,2006,23(10):109-112. 被引量:26

二级参考文献6

  • 1张云勇 刘锦德.移动agent技术[M].北京:清华大学出版社,2003..
  • 2M S Chen, J S Park, P S Yu. Data mining for path traversal patterns in a Web environment [C]. In Proc. The 16th International Conference on Distributed Computing Systems,May, 1996. 385 -392.
  • 3J Han, M Kamber. Data Mining: Concepts and Techniques[ M]. Morgan Kaufmann Publisher, 2000.
  • 4K P Joshi, A. Joshi, Y Yesha and R Krishnapuram.Warehousing and mining web logs. In Proc. Of ACM CIKM Workshop on Web Information and Data Management[C].ACM, 1999. 63 -68.
  • 5M Eirinaki and M Vazirgiannis. Web mining for web personalization[J]. ACM Transactions on Internet Technology(TOIT), 2003, 3 (1): 1 -27.
  • 6R Cooley, B Mobasher and J Srivastava. Data preparation for mining World Wide Web browsing patterns[J]. In Journal of Knowledge & Information Systems, 1999, 1 ( 1 ).

共引文献25

同被引文献154

引证文献27

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部