期刊文献+

Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement

Nordhaus-Gaddum Results for the Sum of the Induced Path Number of a Graph and Its Complement
原文传递
导出
摘要 The induced path number p(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. Broere et hi. proved that if G is a graph of order n, then 〈 p(G) + p(G) 〈3n/2] . In this paper,_we characterize [3n/2], improve the lower bound on p(G) + p(G) by one when the graphs G for which p(G) -4- p(G) = 3n n is the square of an odd integer, and determine a best possible upper bound for p(G) + p(G) when neither G nor G has isolated vertices. The induced path number p(G) of a graph G is defined as the minimum number of subsets into which the vertex set of G can be partitioned so that each subset induces a path. Broere et hi. proved that if G is a graph of order n, then 〈 p(G) + p(G) 〈3n/2] . In this paper,_we characterize [3n/2], improve the lower bound on p(G) + p(G) by one when the graphs G for which p(G) -4- p(G) = 3n n is the square of an odd integer, and determine a best possible upper bound for p(G) + p(G) when neither G nor G has isolated vertices.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第12期2365-2372,共8页 数学学报(英文版)
关键词 Nordhaus-Gaddum induced path number Nordhaus-Gaddum, induced path number
  • 相关文献

参考文献8

  • 1Chartrand, G., Lesniak, L: Graphs &= Digraphs: Third Edition, Chapman & Hall, London, 1996.
  • 2Nordhaus, E. A., Gaddum, J. W.: On complementary graphs. Amer. Math. Monthly, 63, 175-177 (1956).
  • 3Chartrand, G., Mitchem, J.: Graphical theorems of the Nordhaus-Gaddum class. In: Recent Trends in Graph Theory, Lecture Notes in Math. 186, Springer-Verlag, Berlin, 1971, 55-61.
  • 4Jaeger, F., Payan, C.: Relations du type Nordhaus-Gaddum pour le nombre d'absorption d'un simple. C. R. Acad. Sci. Set. A, 274, 728-730 (1972).
  • 5Payan, C., Xuong, N. H.: Domination-balanced graphs. J. Graph Theory, 6, 23-32 (1982).
  • 6Joseph, J. P., Arumugam, S.: Domination in graphs. Internat. J. Mana9. Syst., 11, 177-182 (1995).
  • 7Chartrand, G., Hashimi, J., Hossain, M., et al.: The induced path number of bipartite graphs. Ars Combin., 37, 191 -208 (1994).
  • 8Broere, I., Domke, G. S., Jonck, E., et al.: The induced path number of the complements of some graphs. Australas. J. Combin., 33, 15 -32 (2005).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部