期刊文献+

基于MCA和Context模型结合的磁共振图像去噪

Study of MRI Image Denosing Method Based on MCA and Context Model
下载PDF
导出
摘要 在噪声污染的磁共振图像中,运用MCA和Context模型结合的算法进行处理,以达到尽可能完全滤除噪声的目的。该方法的主要思想是用MCA方法将图像分离成两个部分,分别采用二进小波和Context模型对这两部分进行处理。仿真实验结果表明,本方法是有效可用的,提高了图像的视觉效果,具有更高的PSNR值。 In the MRI image of noise pollution, the MCA and the Context model union algorithm is used as the method of MRI image denosing, in order to achieve the aim of completely filtering out the noise as much as possible. The main idea of this method is that the MCA method is used to separate the image into two parts, using the dyadic wavelet and the context model to deal with these two parts respectively. The simulation results show that this meth- od is effective and available with better visual effect and a higher PSNR value.
出处 《电视技术》 北大核心 2012年第23期12-14,共3页 Video Engineering
关键词 磁共振图像 形态成分分析 context模型 阈值滤波 图像去噪 magnetic resonance image morphological component analysis context model threshold filtering image denosing
  • 相关文献

参考文献7

  • 1BHUTADA G G,ANAND R S,SAXENA S C. Edge preserved image en- hancement using adaptive fusion of images denoised by wavelet and cur- velet transform[J]. Digital Signal Processing,2011,21 ( 1 ) : 118-130.
  • 2LI Xiaofeng, XU Jun, LUO Jijun, et al. Intensity image denoising for laser active imaging system using nonsubsampled contourlet transform and SURE approach [J]. Optik-lntemational Journal for Light and Electron Optics,2012,123(9) :808-813.
  • 3闫敬文.数字图像处理[M].北京:国防工业出版社,2011:101-104.
  • 4李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望[J].电子学报,2009,37(1):146-152. 被引量:55
  • 5WANG Xiangyang,YANG Hongying,FU Zhongkai. A new wavelet-based image denoising using undecimated discrete wavelet transform and least squares support vector machine [ J ]. Expert Systems with Applications,2010,37 (10) :7040-7049.
  • 6翁晓光,王惠南,李虹,陶玲,李韪韬.基于二进小波变换的磁共振图像去噪新算法[J].南京航空航天大学学报,2009,41(6):753-756. 被引量:5
  • 7DE OLIVEIRA H M,DA ROCHA L C D,DE MOURA T C S, et al. Par- tial discharge signal denoising with spatially adaptive wavelet thresholding and support vector machines [ J]. Electric Power Systems Research, 2011,81 (2) :644-659.

二级参考文献37

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2刘杰,朱启兵,李允公,应怀樵.基于新阈值函数的二进小波变换信号去噪研究[J].东北大学学报(自然科学版),2006,27(5):536-539. 被引量:11
  • 3A Hyvarinen, J Karhunen, E Oja. Independent component analysis[M]. New York: Wiley, 2001.
  • 4A Belouchrani,K A Merairn, J-F Cardoso, E Moulines. A blind source separation technique based on second order statistics[ J]. reEF, transactions on Signal Processing, 1997, 45 (2) : 434 - 444.
  • 5B A Pearlrnutter, V K Potluru. Sparse separation:Principles and tricks[ A]. Proceedings of International Society for Optical Engineering(SPIE) [ C]. Orlando, FL, USA,2003,5102:1 - 4.
  • 6P G Georgiev,F Theis,A Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J]. IEEE Transactions on Neural Network, 2005, 16 ( 4 ) : 992 - 996.
  • 7M Zibulevsky, B A Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary [J ]. Neural Computation,2001,13(4) : 863 - 882.
  • 8J L Starck, M Elad, D Donoho. Redundant multiscale transforms and their application for morphological component analysis[J]. Advances in Imaging and Electron Physics, 2004, 132 (82) : 287 - 348.
  • 9J L Starck, M Elad, D Donoho. Image decomposition via the combination of sparse representation and a variational approach [J]. IEEE Transactions on Image Processing, 2005, 14( 10): 1570- 1582.
  • 10E J Candes. Ridgelts: theory and applications[ D ]. USA: Department of Statistics, Stanford University, 1998.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部