期刊文献+

矩阵的次特征值及其应用

The subeigenvalue of matrix and its applications
下载PDF
导出
摘要 矩阵的次特征值、次特征向量和次相似变换概念分别是特征值、特征向量和相似变换概念的自然延伸,它们同样具有明显的几何意义以及几何应用.证明了矩阵的次特征值是次相似变换下的全系不变量.利用次正定矩阵的性质,建立了次正定矩阵的一个基本不等式.同时给出了实对称矩阵次特征值的变分特征. The subeigenvalue, subelgenvector and subsimilarity transformation of matrix are the extension of eigenvalue, elgenvector and similarity transformation, respectively, and have geometric significance and extensive applications, especially in distance geometry. It was proved that the subeigenvalue of a matrix is the complete system of invariant for the subsimilar transformation. Using the property of subpositive definite matrices, a basic inequality about subpositive definite matrices was established. At the same time, the variational characterizations of a real symmetric matrix were given.
作者 杨定华
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第11期920-924,935,共6页 JUSTC
基金 国家自然科学基金(10901116) 四川省教育厅自然科学基金(11ZB080) 四川师范大学重点人才支持计划资助
关键词 次特征值 次特征向量 次相似变换 次正定矩阵 变分特征 subeigenvalue subelgenvector subsimilarity ransformation subpositive definite matrix variational characterization
  • 相关文献

参考文献6

  • 1杨路 张景中.高维度量几何的两个不等式[J].成都科技大学学报,1981,(4):63-70.
  • 2Mine H, Marcus M. A Survey of Matrix Theory andMatrix Inequalities [ M ]? Boston: Weber andSchmidt, 1964.
  • 3Zhang Jingzhong, Yang Lu. Isometric embedding of afinite points set in Pseudo-Euclidean space [J]. ActaMathematica Sinica, Chinese Series, 1981,24(4):481-487.
  • 4杨定华.常曲率空间中单形的某些条件极值问题[J].数学学报(中文版),2006,49(6):1201-1206. 被引量:3
  • 5Horn R A,Johnson C R. Matrix Analysis [M].Cambridge : Cambridge University Press, 1985.
  • 6杨路,张景中.非欧双曲几何的若干度量问题(I ):等角嵌人和度量方程[J].中国科学技术大学学报,1983,13(数学专辑):123-134.

二级参考文献9

  • 1Yang L. and Zhang J. Z., Two inequalities of higher dimensional metric geometry, J. Chengdu Univ. of Sci.and Tech., 1981, (4): 63-70.
  • 2Alexander R., et al. Extremal problems of distance geometry, Trans. Amer. Math. Soc., 1974, 193: 1-31.
  • 3Yang L. and Zhang J. Z., The isometric embedding of finite points in pseudo-Euclidean space, Acta Mathematica Sinica, Chinese Series, 1981, 24(4): 481-487.
  • 4Yang L. and Zhang J. Z., A class of geometric inequalities on finite points, Acta Mathematica Sinica, Chinese Series, 1980, 23(5): 740-749.
  • 5Yang D. H., Some basic inequalities of higher dimensional non-Euclidean geometry, Scienee in China, Series A, 2006, 49(12).
  • 6Blumenthal L. M., et al., Theory and applications of distance geometry, 2nd ed New York, 1970.
  • 7Yang L. and Zhang J. Z., The covering radius of compact setes in hyperbolic space, Science in China, 1982,(8): 683-692.
  • 8Yang L. and Zhang J. Z. Some metric problems in non-Euclidean hyperbolic geometry I: Isogonal embedding and metric equation, J. Chin. Univ. Sci. Tech., 1983, 13 (Math. Issue): 123-134
  • 9Yang L. and Zhang J. Z., The concept of the rank of an abstract distance space, J. Chin. Univ. Sci. Tech.,1980, 10(4): 52-65

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部