期刊文献+

贝叶斯网络数据细化的柴油发电机故障诊断 被引量:3

Data Refinement Approach to Diesel Engine Fault Diagnosis Based on Bayesian Networks
下载PDF
导出
摘要 针对传统故障诊断方法在不确定问题诊断方面的不足,提出了基于贝叶斯网络的数据细化的柴油发电机故障诊断法。对柴油发电机转子的某些特定故障,结合专家知识确定转子特定状态下故障与振动频率、幅值及相关描述的依存关系,将获取的观测数据细化处理,利用结构学习,构建了基于贝叶斯网络的柴油发电机故障诊断模型,通过参数学习确定各节点的条件概率。实验结果表明,在已知信息具有模糊性和不完备性时,基于贝叶斯网络数据细化的故障诊断技术可明显提高诊断正确率。 Since the restriction of traditional method in uncertain problem fault diagnosis, the data refinement approach in diesel engine fault di- agnosis was proposed based on Bayesian networks. This approach used expert knowledge to determine the structure of Bayesian networks, and then it es- tablished the Bayesian networks model of vibration fault diagnosis with the refined data from data nodes which were relevant each other, at last, it got the conditional probability of data nodes through parameter learning. Experimental results indicate that the diagnosis system based on Bayesian net- works has preferable diagnosis efficiency and satis- factory accuracy.
出处 《机械与电子》 2012年第11期26-29,共4页 Machinery & Electronics
关键词 贝叶斯网络 故障诊断 数据细化 柴油发电机 bayesian networks diagnosis data refinement diesel generator
  • 相关文献

参考文献5

  • 1Heckerman D. A tutorial on learning with Bayesian network(Technical Report MSRTR - 95 - 06) [M]. Redmond : Microsoft Rsearch, 1995.
  • 2Wong M L,Leung K S. An efficient data mining meth- od for learning Bayesian networks using an evolution- ary algorithm - based hybrid approach [A]. IEEE Transactions on Evolutionary Computation[C]. 2004. 378-404.
  • 3林士敏,王双成,陆玉昌.Bayesian方法的计算学习机制和问题求解[J].清华大学学报(自然科学版),2000,40(9):61-64. 被引量:30
  • 4Cooper G F, Herskovits E. A bayesian method for the induction of probabilistic networks from data[J]. Ma- chine Learning,1992,9(4) :309--347.
  • 5官秀军.贝叶斯学习理论及其应用研究[D].北京:中国科学院研究生院,2002.

二级参考文献1

  • 1张尧庭,贝叶斯统计推断,1991年

共引文献30

同被引文献25

  • 1郝静辉,杨树耕.海上石油平台拆除技术的发展现状[J].中国港湾建设,2004,24(4):51-54. 被引量:21
  • 2王伟东,朱清新.无线传感器网络中一种层次分簇算法及协作性分析(英文)[J].软件学报,2006,17(5):1157-1167. 被引量:21
  • 3邓歆,孟洛明.基于贝叶斯网络的通信网告警相关性和故障诊断模型[J].电子与信息学报,2007,29(5):1182-1186. 被引量:24
  • 4姜万录,Sarah K.Spurgeon,John A.Twiddle,Fernando S.Schlindwein.基于小波簇的包络解调方法及其在故障诊断中的应用(英文)[J].仪器仪表学报,2007,28(6):973-980. 被引量:11
  • 5Lakhal S. Y. , Khan M. I. , Islam M. R. An "Olympic" Framework for A Green Decommissioning of An Offshore Oil Platform[J]. Ocean & Coastal Management, 2009, 52: 113- 123.
  • 6Jupiter K L. Explosive removal of offshore struetures[R]. USA: Continental Shelf Associate, Inc. ,2004.
  • 7Vehiavi V. , Tjoonk R. , Mahammed H. , et al. Non-explosive solutions for high performance and operational efficiencies. SPE Asia Pacific Health, Safety, Security and Environment Conference and Exhibition 2009 [C]//Indonesia: [s. n. ], 2009:49-55.
  • 8Fanguy D. J. Coiled-tubing-conveyed hydromechanical pipe cutting: a Safe, effective alternative to chemical and explosive severing methods. SPE/ICoTA Coiled Tubing Roundtable [C]. USA..[s. n ],2001.
  • 9Baoping Cai, Yonghong Liu, Zengkai Liu. et al. Using Bayes- ian networks in reliability evaluation for subsea blowout pre- venter control system[J]. Reliability Engineering and System Safety, 2012,108 : 31-41.
  • 10Baoping Cai, Yonghong Liu, Zengkai Liu. et al. Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations[J]. Risk Analysis, DOI: 10. 1111/j. 1539-6924. 2012. 01918. x.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部