期刊文献+

物流网络抗毁性测度方法研究 被引量:2

原文传递
导出
摘要 为了全面度量物流网络的抗毁性,抗毁性测度也应当从物理层抗毁性和业务层抗毁性两个方面研究。其中,研究物理层抗毁性时,不考虑运输业务,主要从拓扑结构角度研究网络自身的一些特性;研究业务层抗毁性时,需要根据网络的主要职能以及需求点对物流网络的要求来设计抗毁性测度指标,即从运输业务研究其抗毁性。
出处 《中国物流与采购》 2012年第23期66-67,共2页 China Logistics & Purchasing
  • 相关文献

同被引文献17

  • 1BEHNAM V, REZA T M, FARIBORZ J. Reliable design of a logis- tics network under uncertainty: A fuzzy possibilitic - queuing model [J]. Applied Mathematical Modeling, 2013 (37): 3254-3268.
  • 2WU L S, TAN Q M, ZHANG Y H. Delivery time reliability model of logistics network [J]. Mathematical Problems in Engineering, 2013 (6) : 1 -5.
  • 3KLOSE A, DREXL A. Facility location models for distribution sys- tem design [ J ]. European Journal of Operational Research, 2005, 162 (1): 4-29.
  • 4PEER S K, SHARMA D K. Finding the shortest path in stochastic networks [ J ]. Computers and Mathematics with Applications, 2007, 53 (5): 729-740.
  • 5LIN Y K. Time version of the shortest path problem in a stochastic - flow network [ J ]. Journal of Computational and Applied Mathemat- ics, 2009, 228 (1): 150-157.
  • 6Behnam V,Reza T M, Fariborz J. Reliable Design of aLogistics Network under Uncertainty : A Fuzzy Possibilitic-queuing Model[J]. Applied Mathematical Modeling,2013(37): 3254-3268.
  • 7WU L S, TAN Q M, ZHANG Y H. Delivery TimeReliability Model of Logistics Network[EB/OL]. HindawiPublishing Corporation, 2013(2015-03-14) [2015-05-14].http://www.hindawi.com/joumals/mpe/2013/879472/.
  • 8Klose A, Drexl A. Facility Location Models for DistributionSystem Design[J]. European Journal of OperationalResearch, 2005, 162(1): 4-29.
  • 9Peer S K,Sharma D K. Finding the Shortest Path inStochastic Networks[J]. Computers and Mathematics withApplications, 2007, 53(5): 729-740.
  • 10LIN Y K. Time Version of the Shortest Path Problem in aStochastic-flow Network[J]. Journal of Computational andApplied Mathematics,2009, 228(1): 150-157.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部