期刊文献+

内心细分法的一个变式 被引量:2

A Variation of Incenter Subdivision Scheme
下载PDF
导出
摘要 内心细分法中,临时切向调整的方法比较复杂,且几何意义不明显,为此给出了内心细分法的一个变式.给定初始点列及其切向,内心细分法的每一个细分步骤分为2个阶段:首先根据老点和切向确定新点及其临时切向,然后调整临时切向用于下一步细分.文中给出了调整切向的新方法,使切向计算更简单、几何意义更明显.最后通过大量的数值实例验证了极限曲线的G2连续性及光顺性与细分参数选择之间的关系. The computation of the new tangents of incenter subdivision scheme is complex and without intuitive geometrical meaning. In this paper, we give a variation of incenter subdivision scheme by modifying the computation of new tangents with simple computation and intuitive geometrical meaning. Given the initial point array and initial tangent vectors, there are two substeps in each subdivision step of our new scheme: firstly the new points and the provisional tangents are determined by the same rules of incenter subdivision scheme, then the new tangent at each point is defined as a linear combination of its provisional tangent as well as the tangent sampled at a circle passing this point and its two adjacent points. The relations between G2 continuity and fairness of the limit curves and the selection of combination coefficient in subdivision process are examined by numerical examples.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第12期1542-1548,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61003194 60970079 11026107)
关键词 非线性细分方法 曲线插值 保形 保圆 non-linear subdivision scheme curve interpolation shape preserving circle reproducing
  • 相关文献

参考文献15

  • 1Ohtake Y,Belyaev A, Seidel H P. Interpolatory subdivisioncurves via diffusion of normals [C] //Proceedings of ComputerGraphics International. Los Alamitos: IEEE ComputerSociety Press, 2003 : 22-27.
  • 2Dyn,N, Levin D, Gregory J A. A 4-point interpolatorysubdivision scheme for curve design [J]. Computer AidedGeometric Design, 1987, 4(4): 257-268.
  • 3Hassan M, Ivrissimitzis I, Dodgson N, et al. Aninterpolating 4-point C2 ternary stationary subdivision scheme[J]. Computer Aided Geometric Design, 2002,19(1): 1-18.
  • 4Marinov M, Dyn N,Levin D. Geometrically controlled 4-point interpolatory schemes [M] //Dodgson N A, FloaterM S. Sabin M A. Advances in Multiresolution for GeometricModeling. Heidelberg: Springer, 2005 : 301-315.
  • 5邓重阳,汪国昭.曲线插值的一种保凸细分方法[J].计算机辅助设计与图形学学报,2009,21(8):1042-1046. 被引量:14
  • 6Cai Z J. Modified four-point scheme and its application [J].Computer Aided Geometric Design, 1998, 15(3) : 251-260.
  • 7Dyn N, Kuijt F, Levin D, et al. Convexity preservation of the four point interpolatory subdivision scheme [J].Computer Aided Geometric Design, 1999, 16(8):789-792.
  • 8金建荣,汪国昭.构造曲线的插值型细分法——非均匀四点法[J].高校应用数学学报(A辑),2000,15A(1):97-100. 被引量:15
  • 9Aspert N, Ebrahimi T, Vandergheynst P. Non-linearsubdivision using local spherical coordinates [J]. ComputerAided Geometric Design, 2003,20(3) : 165-187.
  • 10Kuijt F, van Damme R. Convexity preserving interpolatorysubdivision schemes [J]. Constructive Approximation, 1998,14(4) : 609-630.

二级参考文献16

  • 1Ohtake Y, Belyaev A, Seidel H P. lnterpolatory subdivision curves via diffusion of normals [C] //Proceedings of the Computer Graphics International, Tokyo, 2003:22-27.
  • 2Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design[J]. Computer Aided Geometric Design, 1987, 4(3) : 257-268.
  • 3Hassan M F, Ivrissimitzis I P, Dodgson N A, et al. An interpolating 4-point C^2 ternary stationary subdivision scheme [J]. Computer Aided Geometric Design, 2002, 19 (1): 1-18.
  • 4Dyn N, Floater M S, Hormann K. A C^2 four-point subdivision scheme with fourth order accuracy and its extensions [M] //Mathematical Methods for Curves and Surfaees. Brentwood: Nashboro Press, 2004:145-156.
  • 5Marinov M, Dyn N, Levin D. Geometrically controlled 4- point interpolatory schemes [M]//Advances in Multiresolution for Geometric Modeling. London: Springer, 2006:303-315.
  • 6Cai Z J. Modified four-point scheme and its application [J]. Computer Aided Geometric Design, 1998, 15(2): 251-260.
  • 7Dyn N, Kuijt F, Levin D, et al. Convexity preservation of the four-point interpolatory subdivision scheme [J]. Computer Aided Geometric Design, 1999, 16(8): 789-792.
  • 8Aspert N, Ebrahimi T, Vandergheynst P. Non-linear subdivision using local spherical coordinates [J]. Computer Aided Geometric Design, 2003, 20(3): 165-187.
  • 9Kuijt F, van Damme R. Convexity preserving interpolatory subdivision schemes [J]. Constructive Approximation, 1998, 14(4) : 609-630.
  • 10Dyn N, Levin D, Liu D. Interpolatory convexity-preserving subdivision schemes for curves and surfaces [J]. ComputerAided Design, 1992, 24(4): 211-216.

共引文献26

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部