期刊文献+

磁控溅射制备ZnO:Eu薄膜发光性能研究

Fabrication of Eu-doped ZnO thin films by magnetron sputtering and photoluminescence properties
下载PDF
导出
摘要 采用射频磁控溅射法在蓝宝石基片上制备ZnO:Eu薄膜,通过X射线衍射仪和荧光分光光度计等测试其晶体结构和发光特性,分析退火对薄膜晶体结构和发光特性的影响。结果表明,ZnO:Eu薄膜为C轴择优生长的多晶薄膜,实现ZnO基质中掺杂Eu3+;退火样品结晶质量较好,有助于ZnO:Eu薄膜中Eu3+的5D0-7F2的能级跃迁发光;高于ZnO带隙的高能激发(间接激发)和Eu3+的7F0-5L6和7F3-5D2能级间的低能共振激发(直接激发)都能观察到Eu3+的5D0-7F2能级跃迁的特征发光(618nm);间接激发时存在ZnO基质与Eu3+之间发生能量传递。 The ZnO: Eu films grown by radio frequency (RF) magnetron sputtering on sapphire substrates were investigated. The lattice structure and photolumineseence (PL) properties of the ZnO:Eu films were 'characterized by X-ray diffractometer and spectrometer,respectively. Influence of annealing on the lattice structure and PL properties of the ZnO:Eu films were analyzed. The results reveal that the ZnO:Eu films are polycrystalline with a C-axis oriented wurtzite structure. Annealing is beneficial to improve the crystallization quality and the intra-4f shell transition of 5D0-7F2 in Eu3+. In PL measurements under the high-energy excitation above the band-gap energy of ZnO (indirect-excitation) and under the low-energy excitation resonant to the energy levels of 7F0-SL6 and 7F3-SD2 transitions (direct-excitation) , the annealed samples showed the red-emission lines (618nm) due to the intra-4f shell transition of 5D0-7F: in Eu3+. There is energy transfer from ZnO to Eu3+ under the indirect-excitation.
出处 《真空》 CAS 2012年第6期32-34,共3页 Vacuum
基金 黑龙江省青年基金(批准号:QC06C043) 哈尔滨市青年基金(批准号:2006RFQXG055) 黑龙江省教育厅骨干教师项目(批准号:1251G031) 哈师大预研项目(批准号:08XYS-01) 牡丹江师范学院科研项目(批准号:QY201105)
关键词 ZNO EU 光致发光 磁控溅射 ZnO Eu3+ photoluminescence magnetron sputtering
  • 相关文献

参考文献11

  • 1Rack P D, Holloway P H. [J]. Mater. Sci. Eng.R, 1998,21: 171.
  • 2Leskela M.[J]. J. Alloys Compd, 1998,702:275-277.
  • 3Nyein E E, Hommerich U, Heikenfeld J et al.[J]. Appl. Phys. Lett,2003,82:1655.
  • 4Andreev T, Liem N Q, Hori Yet al. [J]. Phys.Rev. B, 2006,73 : 195203.
  • 5Peng H,Lee C W,Everitt H 0 et al. [J]. J. Appl.Phys, 2007,102:073520.
  • 6Lima S A M,Davolos M R,Quirino W G et al.[J]. Appl. Phys. Lett, 2007,90 : 023503.
  • 7Ishizumi A, Kanemitsu Y.[J]. Appl. Phys. Lett,2005,86: 253106.
  • 8Du Y P, Zhang Y W,Sun L D et al.[J]. J. Phys. Chem. C,2008,112:12234.
  • 9Jia W,Monge K,Femandez F. [J] Opt. Mater,2003,23: 27.
  • 10Armelao L, Bottaro G,Pascolini M et al. [J]. J. Phys. Chem. C,2008,112:4049.

二级参考文献10

  • 1Tang Z K, Wong G K L and Yu P 1998 Appl. Phys. Lett. 72 3270.
  • 2Bagnall D M, Chen Y F, Zhu Z et al 1997 Appl. Phys. Lett. 70,2230.
  • 3Cao H, Zhao Y G, Ho S T et al 1999 Phys. Rev. Lett. 82 2278.
  • 4Zu P, Tang Z K,Wang G K L et al 1997 Solid State Commun. 103459.
  • 5[ Zhang D H and Wang Q p 2001 Physics 30 741 (in Chinese) ].
  • 6Zhang G B, Shi C S, Han Z F et al 2001 Chin. Phys. Lett. 18441.
  • 7Wu H Z, Xu X L, Qiu D J et al 2002 Chin. Phys. Lett. 17664.
  • 8Fu Z X, Guo C X, Lin B X et al 1998 Chin. Phys. Lett. 1.5457.
  • 9Wang Q P,Zhang D H, Xue Z Y 2002 Appl. Sur. Sci. 201 128.
  • 10Bethke S, Pan H and Wessels B W 1988 Appl. Phys. Lett. 72 138.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部