期刊文献+

一种新的基于约简的多分类器融合算法 被引量:5

Reduction-based multiple classifiers combination algorithm
下载PDF
导出
摘要 提出了一种新的多分类器融合算法。对特征的提取以约简为基础,按照一定的策略添加若干个属性重要度和特征贡献率大的特征,构成一个融合的特征子集空间;接着借助于kNN的思想,计算测试样本的k个最邻近点的类别百分比,为了提高分类精度,引入了样本相似度测度测试样本与k个最邻近点的相似性,通过设置合适的类别百分比和样本相似度的阈值,最终确定测试样本的类别归属。6个UCI标准数据集的实验分析表明,算法是有效的、可行的。详细分析了不同的约简和不同的阈值对分类精度的影响。 The feature extraction is based on a reduction, and then to add several features that the value of attribute significance or contribution rate is large according to certain strategy, the feature subset space combined is constituted. With the idea of kNN, to calculate the category percentage of the k-nearest neighbors around the test sample. In order to improve the classification accuracy, the sample similarity measure is introduced to calculate the similarity between the test samples and k-nearest neighbors. By setting the appropriate threshold of the category percentage and the sample similarity, to ultimately determine the category of the test samples. The algorithm' s validity and feasibility have been verified by six multidimensional data sets from UCI. The impact of the different reductions and different thresholds for classification accuracy is analysed detailedly.
出处 《计算机工程与应用》 CSCD 2012年第34期11-16,59,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61170106)
关键词 邻域粗糙模型 约简 属性重要度 特征贡献率 融合特征子空间 样本相似度 neighborhood rough set model reduction attribute significance feature contribution rate feature subspace combined sample similarity
  • 相关文献

参考文献6

  • 1Kittler J, Hatef M, Duin R P W, et al.On combining classifiers[J].IEEE Trans on Pattern A nalysis and Ma- chine Intelligence, 1998,20 (3) : 226-239.
  • 2Hegarat-Mascle S L, Bloch I, Vidal-Madjar D.Introduc- tion of neighborhood information in evidence theory and application to data fusion of radar and optical im- ages with partial cloud cover[J].Pattern Recognition, 1998,31(11):1811-1823.
  • 3Keller J M, Gader P, Tahani H, et al.Advances in fuzzy integration for pattern recognition[J].Fuzzy Sets and Sys- tems, 1994,65 (2/3) : 273-283.
  • 4Jensen R, Shen Q.Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches[J]. IEEE Trans on Knowledge and Data Engineering,2004, 16(12) :1457-1471.
  • 5胡清华,于达仁,谢宗霞.基于邻域粒化和粗糙逼近的数值属性约简[J].软件学报,2008,19(3):640-649. 被引量:290
  • 6刘遵仁,吴耿锋.基于邻域粗糙模型的高维数据集快速约简算法[J].计算机科学,2012,39(10):268-271. 被引量:11

二级参考文献20

共引文献293

同被引文献17

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部