期刊文献+

集成学习算法的研究与应用 被引量:8

Study of ensemble algorithm and its application
下载PDF
导出
摘要 集成学习算法的思想就是集成多个学习器,并组合它们的预测结果,以形成最终的结论。典型的学习模型组合方法有投票法,专家混合方法,堆叠泛化法与级联法,但这些方法的性能都有待进一步提高。提出了一种新颖的集成学习算法--增强的集成学习算法(ReinforcedEnsemble)。ReinforcedEnsemble集成算法由两大部分组成:ReinforcedEnsemble特征提取算法与ReinforcedEnsemble基分类器。通过实验,将ReinforcedEnsemble算法与其他集成学习算法进行了性能比较。实验结果表明,所提出的算法在多项指标上均达到最优。 The idea of ensemble learning is to employ multiple learners and combine their predictions. The typical methods of combining multiple models such as bagging, boosting, stacking error correcting output codes, voting, mixtures of experts, stacked generalization and cascading. Though a considerable effort has been put into developing statistical models and algorithmic strategies for classification, the accurate of the classification has been proven to be very challenging. A novel ensemble algorithm, ReinforcedEnsemble is proposed. ReinforcedEnsemble ensemble algorithm consists of two parts, ReinforcedEnsemble feature extraction algoritlun and ReinforcedEnsemble base classifier. The performance between ReinforcedEnsemble and other ensemble algorithm in the experiments is compared. The experimental results show that the proposed algorithm is optimal in a number of indicators.
作者 侯勇 郑雪峰
出处 《计算机工程与应用》 CSCD 2012年第34期17-22,共6页 Computer Engineering and Applications
关键词 特征提取 最大间隔 多层感知器 集成算法 KDDCUP99数据集 入侵检测 feature extraction maximum margin multilayer perceptron assemble algorithm KDDCUP99 data set intrusion detection
  • 相关文献

参考文献12

  • 1张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139
  • 2赵强利,蒋艳凰,徐明.基于FP-Tree的快速选择性集成算法[J].软件学报,2011,22(4):709-721. 被引量:6
  • 3Minku L L.The impact of diversity on online ensemble learning in the presence of concept drift[J].lEEE Trans- actions on Knowledge and Data Engineering, 2010,22 (5).
  • 4Ikuta C, Uwate Y,Nishio Y, et al.Multi-layer perceptron with glial network for solving two-spiral problem[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, E94-A (9) : 1864-1867.
  • 5Khan N M,Ksantini R, Ahmad I S,et al.A novel SVM+ NDA model for classification with an application to face recognition[J].Pattem Recognition, 2012,45 ( 1 ) : 66-79.
  • 6Wang Kun-Ching, Chin Chiun-Li.An approach using com- bination of multiple features through sigmoid function for speech-presence/absence discrimination[J].IEICE Trans- actions on Fundamentals of Electronics, Communica- tions & Computer Sciences,2011,E94-A(8) : 1630-1637.
  • 7Oh Sang-Hoon.Error back-propagation algorithm for classi- fication of imbalanced data[J].Neurocomputing, 2011,74 (6) : 1058-1061.
  • 8Fushiki T.Estimation of prediction error by using If-fold cross-validation[J].Statistics and Computing, 2011,21 (2) : 137-146.
  • 9张红梅.基于随机子空间PCA-SVM集成的实时入侵检测系统[J].仪器仪表学报,2009,30(12):2680-2684. 被引量:8
  • 10韩冰,高新波,姬红兵.一种基于选择性集成SVM的新闻音频自动分类方法[J].模式识别与人工智能,2006,19(5):634-639. 被引量:5

二级参考文献113

  • 1蒋艳凰,赵强利,杨学军.一种搜索编码法及其在监督分类中的应用[J].软件学报,2005,16(6):1081-1089. 被引量:13
  • 2谷雨,郑锦辉,戴明伟,何磊.基于Bagging支持向量机集成的入侵检测研究[J].微电子学与计算机,2005,22(5):17-19. 被引量:6
  • 3王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 4VAPNIK V. Statistical learning theory[M]. New York: Wiley, 1998.
  • 5JOHN SHAWE-TAYLOR, NELLO CRISTIANINI Kernel methods for pattern analysis[M]. Cambridge Cambridge University Press, 2004.
  • 6SCHOLKOPF B, SMOLA A. Learning with Kernels[M]. Cambridge: MIT Press, 2002.
  • 7SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kemels[C]//Proc, of IJCNN _02 on Neural Networks. Hawaii: IEEE Press, 2002, 3: 2785- 2790.
  • 8ZHENG Sheng, LIU Jian, TIAN Jin-wen. An efficient staracquisition method based on SVM with mixtures of kernels[J]. Paltern Recognition Letters, 2005, (26): 147 -165.
  • 9USTUN B, MELSSEN W J, OUDENHUIJZEN M, et al. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization[J]. Anal. Chim. Acta, 2005, 544(1/2): 292 -305.
  • 10CHERKASSKY VLADIMIR, MA YANQIAN. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1): 113 -126.

共引文献164

同被引文献58

  • 1彭岩,赵梓如,吴婷娴,王洁.PM2.5浓度预测与影响因素分析[J].北京邮电大学学报,2019,42(6):162-169. 被引量:7
  • 2赵敏,陈恩红,宋睿.基于集成学习的Adaboost演化决策树算法[J].计算机应用与软件,2007,24(3):1-2. 被引量:4
  • 3Aydin l,Karakose M , Akin E. An adaptive artificial immune system for fault classification [ J]. Journal of Intelligent Man- ufacturing,2012,23 (5) : 1489 - 1499.
  • 4Chang S Y,Yeh T Y. An artificial immune classifier for credit scoring analysis [ J ]. Applied Soft Computing, 2012,12 ( 2 ) : 611 -618.
  • 5Nicholas, W. , Pradeep, R. , Grog S. , Lundy, L. Artificial immune systems for the detection of credit card fraud : an ar- chitecture, prototype and preliminary results [ J ]. Information Systems Journal,2012,22( 1 ) : 53 -76.
  • 6Binh L N, Huynh T L, Pang K K. Combating Mobile Spam through Botnet Detection using Artificial Immune Systems [ Jl. Journal of Universal Computer Science, 2012, 18 ( 6 ) : 750 - 774.
  • 7Samigulina G A. Development of decision support systems based on intellectual teehnology of artificial immune systems [J]. Automation and Remote Control,2012,73 (2): 397 - 403.
  • 8Watkins A, Timmis J. Exploiting parallelism inherent in AIRS, artificial immune classifier [EB/OL]. ( 2012 ) [2012 -01 ]. http://www, es. kent. ae. uk/? abw5/.
  • 9Breiman L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 10Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System.Cambridge,MA:MIT Press,1995,7:231-238.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部