期刊文献+

Be和Ca掺杂纤锌矿ZnO的晶格常数与能带特性研究 被引量:4

Study on the lattice constants and energy band properties of Be and Ca doped wurtzite ZnO
原文传递
导出
摘要 利用密度泛函理论平面波的赝势方法,对Be、Ca掺杂纤锌矿ZnO的BexZn1-xO,CayZn1yO三元合金和BexCayZn1-xyO四元合金的晶格常数、能带特性和形成能进行计算,结果表明:BexZn1-xO晶格常数随Be掺杂量的增大线性减小,但CayZn1yO晶格常数随Ca掺杂量的增大而增大.BexZn1-xO和CayZn1-yO能带的价带顶都由O2p态电子占据,导带底由Zn4s态电子占据,其能隙随Be或Ca掺杂量的增大而变宽.由Be和Ca共掺ZnO得到的Be0.125Ca0.125Zn0.75O四元合金,其晶格常数与ZnO相匹配,能隙比ZnO大,稳定性优于Be0.25Ca0.125Zn0.625O和Be0.5Zn0.5O合金,Be0.125Ca0.125Zn0.75O/ZnO异质结构适合制作高质量ZnO基器件. The lattice constants, energy band properties and formation energies of BexZn1-xO, CayZn1-yO and BexCauZn1-x-yO alloys of Be and Ca doped wurtzite ZnO alloys are calculated by the plan-wave pseudopotential method with GGA in density functional theory (DFF). The theoretical results show the lattice constants of BexZn1-xO alloy decrease with Be content increasing, which is contrary to the scenario of CavZn1-yO alloy. For the energy band properties of BexZn1-xO and CauZn1-yO alloys, the valence band maxima (VBM) are determined by O 2p states and the conduction band minima (CBM) is occupied by Zn 4s states, and their band gaps are broadened when Be or Ca content is increased. The lattice constant of Be0.125Ca0.125Zn0.75O alloy of Be and Ca co-doped ZnO is matched with that of ZnO and its energy bandgap is greater than that of ZnO, so Be0.125Ca0.125Zn0.75O/ZnO structure is suitable for high-quality ZnO based device. In addition, the stability of Be0.125Ca0.125Zn0.750 alloy is also analysed.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第22期372-380,共9页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61176043) 广东省战略性新兴产业专项资金(批准号:2010A081002005 2011A081301003)资助的课题~~
关键词 密度泛函理论 BexCayZn1-x-yO 晶格常数 能带特性 density-function theory (DFT), BezCayZn1-x-yO, lattice constants, energy band properties
  • 相关文献

参考文献2

二级参考文献66

  • 1沈益斌,周勋,徐明,丁迎春,段满益,令狐荣锋,祝文军.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445. 被引量:56
  • 2段满益 徐明 周海平 陈青云 胡志刚 董成军.物理学报,2008,(57):6520-6520.
  • 3Tanaka H, Zhang J, Kawai T 2002 Phys. Rev. Lett. 88 027204
  • 4Takahashi K S, Matthey D, Jaccard D, Triscone J M, Shibuya K, Ohnishi T, Lippmaa M 2004 Appl. Phys. Lett. 84 1722
  • 5Pan F, Olaya D, Price J C, Rogers C T 2004 Appl. Phys. Lett. 84 1573
  • 6Kvyatkovski O E 2001 Phys. Solid State 43 1401
  • 7Zhao T, Chen Z H, Chen F, Shi W S, Lu H B 1999 Phys. Rev. B 60 1697
  • 8Eisenbeiser K, Finder J M, Yu Z, Ramdani J, Curless J A, Hallmark J A, Droopad R, Ooms W J, Salem L, Bradshaw S, Overgaard C D 2000 Appl. Phys. Lett. 76 1324
  • 9Higuchi T, Tsukamoto T, Kobayashi K, Ishiwata Y, Fujisawa M, Yokoya T, Yamaguchi S, Shin S 2000 Phys. Rev. B 61 12560
  • 10Evarestov R A, Piskunov S, Kotomin E A, Borstel G 2003 Phys. Rev. B 67 064101

共引文献18

同被引文献24

  • 1张飞鹏,曾宏,路清梅,张忻,张久兴.ZnO氧化物的电子结构与热学性能的研究[J].功能材料与器件学报,2013,19(2):63-68. 被引量:13
  • 2沈益斌,周勋,徐明,丁迎春,段满益,令狐荣锋,祝文军.过渡金属掺杂ZnO的电子结构和光学性质[J].物理学报,2007,56(6):3440-3445. 被引量:56
  • 3Saito N,Haneda H,Sekiguchi T,et al.Low-temperature fabrication of light-emitting zinc oxide micropatterns using selfassembled nanolayer[J].Adv Mater,2002,14(6):418-421.
  • 4Kim H,Gilmore C M,Horwitz J S,et al.Transparent conducting aluminum-doped zinc oxide thin films for organic lightemitting devices[J].Applied Physics Letters,2000,76(3):259-261.
  • 5Tang Z K,Wong G K L,Yu P,et al.Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J].Applied Physics Letters,1998,72(25):3270-3272.
  • 6Alivov Y I,Ozgur U,Dogan S,et al.Photoresponse of n-ZnO/p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy[J].Applied Physics Letters,2005,86(24):241108-241108-3.
  • 7Sharma A K,Narayan J,Muth J F,et al.Optical and structural properties of epitaxial MgxZn1-xO alloys[J].Applied physics letters,1999,75(21):3327-3329.
  • 8Kavitha R,Jayaram V.Band-gap engineering in ZnO-MgO films prepared by combustion flame pyrolysis of solution precursors[J].Journal of Electronic Materials,2007,36(10):1326-1332.
  • 9Payne M C,Teter M P,Allan D C,et al.Iterative minimization techniques for ab initio total-energy calculations:mo-lecular dynamics and conjugate gradients[J].Rev Mod Phys,1992,64:1045-1097.
  • 10Segall M D,Lindan P J D,Probert M J,et al.First-principles simulation:ideas,illustrations and the CASTEP code[J].J Phys:Condens Matter,2002,14:2717-2744.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部