期刊文献+

Pr_(1-x)Ce_xB_6阴极材料的原位反应合成及性能研究 被引量:1

Synthesis and properties of multiple boride Pr_(1-x)Ce_xB_6 cathodes by reactive spark plasma sintering
原文传递
导出
摘要 本文以CeH2,PrH2纳米粉和B粉为原料,在无氧环境下采用放电等离子原位反应成功制备了单相多元稀土六硼化物Pr1-xCexB6(x=0.2—0.8)阴极材料.系统研究了掺杂元素Ce对Pr1-xCexB6的物相组成、力学性能及热电子发射性能的影响.结果表明,当烧结温度为1450C,烧结压强为50MPa时可制得单相的Pr1-xCexB6多晶块体材料并且该系列样品具有良好的力学性能,维氏硬度和抗弯强度最高值分别达到了24.34GPa和226.02MPa,已达到单晶水平.热电子发射性能结果表明,随着Ce掺杂量的增加Pr1-xCexB6的发射电流密度线性增加.当阴极温度为1973K,外加电压为950V时,Pr0.4Ce0.6B6最大发射电流密度达到47.3A·cm2,该值远高于传统热压烧结法制备的发射电流密度.因此,本文该方法制备的Pr1-xCexB6多晶块体具有良好的力学性能和发射性能,作为热阴极材料将会有很好的应用前景. The polycrystalline Pr1-xCexB6(x = 0.2, 0.4, 0.6, 0.8) hexaborides are prepared by the reactive spark plasma sintering (SPS) method using mixed powder of Cell2, PrH2 and B. The effects of Ce doping on the phase composition, the mechanical properties and the thermionic emission properties of the hexaboride are investigated. The single-phased hexaborides Pr1-xCexB6 bulks are sintered at a temperature of 1450℃, pressure of 50MPa and holding time of 5 min, and the sintered samples show high value of Vickers hardness (24.34 GPa) and bend strength (226.02 MPa). The thermionic emission results show that with the increase of Ce content, the thermionic emission current density increases linearly and the maximum value of Pr0.4Ce0.6B6 reaches 47.3 A.cm-2 under an applied voltage of 950 V at 1973 K, which is much higher than that obtained by traditional method. Thus, the SPS technique represents a suitable method to synthesize the dense rare-earth hexaborides with excellent properties.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2012年第22期470-475,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:50871002) 北京市自然科学基金(批准号:2112007) 北京市属高校人才强教青年骨干人才培养项目(批准号:PHR20110812)资助的课题~~
关键词 稀土六硼化物 放电等离子烧结 热电子发射性能 rare-earth hexaborides, spark plasma sintering, thermionic emission property
  • 相关文献

参考文献2

二级参考文献32

  • 1张粹伟.六硼化镧阴极[J].光电子技术,1989,9(3):35-44. 被引量:5
  • 2林祖伦,曹贵川,张义德,陈泽祥,祁康成.大面积环状LaB_6阴极[J].强激光与粒子束,2006,18(2):305-308. 被引量:12
  • 3Gygax F N,Schenck A.Journal of Alloysand Compounds,2005,404-406(11):360-364.
  • 4Nakao H.J.Phys.Soc.Japan,2001,70(2):1857-1858.
  • 5Wieslawa Sikora,Franciszek Bialas,Lucian Pytlik,et al.Solid StateScience,2005,7(6):645-655.
  • 6Balakrishnan G,Lees M R,McK Paul D,et al.Journal of CrystalGrowth,2003,256(1/2):206-209.
  • 7Zou Chun Yun,Zhao Yan Ming,Xu Jun Qi,et al.Journal of CrystalGrowth,2006,291(1):112-116.
  • 8Togawaa K,Babaa H,Onoea K,et al.Nuclear Instruments and Methods in Physics ResearchA,2004,528(4):312-315.
  • 9Otani S,Nakagawa H,Nishi Y,et al.Journal of Solid State Chemistry,2000,154(1):238-241.
  • 10Swanson L W,Mcneely D R.Surface Science,1979,83(1):11-28.

共引文献17

同被引文献3

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部