期刊文献+

基于自适应支持向量机的磨粒识别技术研究 被引量:5

Research on Wear Particle Recognition Based on Self-Adapting Support Vector Machine
下载PDF
导出
摘要 通过对铁谱磨粒类型进行识别,可有效监测机械装备磨损状态,有利于尽早发现和消除故障隐患。对粒子群优化算法进行改进,采用改进的粒子群算法同时优化支持向量机的惩罚参数和核函数参数,建立了自适应磨粒识别模型。通过对磨粒样本进行仿真实验,识别正确率达到98%,并与BP神经网络方法进行对比,结果表明了该方法的有效性及优越性。 Through the pattern recognition of ferrograghy wear particle, the wear condition of mechanical equipment can be monitored effectively to prevent the malfunction problems. The raditional particle swarm optimization algorithm is improved, in addition, the improved PSO is used to optimize the error punish modulus and kernel function parameter, and the slf-adapting recogniyion model for wear particle was established. The method is applied in simulation, and the classification accuracy rate is 98% . The method is compared with the BP neural network, the results show superiority and effectivity of the new method.
出处 《科学技术与工程》 北大核心 2012年第32期8543-8546,8552,共5页 Science Technology and Engineering
基金 航空科学基金(2008ZG54024)资助
关键词 磨粒识别 支持向量机 粒子群算法 wear particle recognition support vector machine particle swarm optimization
  • 相关文献

参考文献6

  • 1艾娜,吴作伟,任江华.支持向量机与人工神经网络[J].山东理工大学学报(自然科学版),2005,19(5):45-49. 被引量:32
  • 2Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks. Perth, Aus- tralia: IEEE, 1995:1942-1948.
  • 3Eberhart R C, Kennedy J. A new optimizer using particle swarm the- or/. Proceedings of the Sixth International Symposium on Micro Ma- chine and Human Science, Nagoya, Japan: Is. n], 1995:39-43.
  • 4Shi Y, Eberhart R C. A modified particle swarm optimizer. Proceed- iugs of IEEE International Conference on Evolutionary Computation, Anchorage, Alaska: IEEE, 1998:69-73.
  • 5杨丽明.基于SVM理论的一种新的数据分类方法[J].数学的实践与认识,2003,33(12):61-65. 被引量:25
  • 6康剑莉,芦亚萍,周银生.改进的BP算法在磨粒识别中的应用[J].润滑与密封,2005,30(2):149-150. 被引量:8

二级参考文献9

共引文献62

同被引文献59

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部