期刊文献+

基于双谱和奇异值分解的结构损伤试验 被引量:3

Experimental study of structural damage based on bispectral analysis and singular value decomposition
下载PDF
导出
摘要 介绍双谱和奇异值分解(SVD)的理论,通过计算结构振动加速度信号的双谱,根据不同荷载下双谱幅值的等值线变化规律来判断结构的损伤程度和评价结构非线性振动特征.利用奇异值分解方法计算双谱的主奇异值,根据主奇异值在不同荷载下的变化情况,来评价结构的损伤和非线性变化.2根钢筋混凝土梁在逐级加载下损伤破坏的试验数据分析结果表明,双谱及其奇异值对结构损伤的变化比较敏感,双谱及其奇异值的变化规律与试验过程中试件的裂缝发展和损伤情况相一致,可以应用于结构损伤的监测. The theory of bispectral analysis and the method of singular value decomposition (SVD) were introduced. By the calculation of bispectra of structural vibration acceleration signals, the damage level and nonlinear vibration characteristics of structure were evaluated according to the variation of contour of amplitude of the bispectra under different loadings. The singular values of amplitude of the bispectra were calculated by SVD method and used to evaluate the damage degree and nonlinear variation of structure. The data analysis results of the experiment of two reinforced concrete beams which were damaged under s tepwise loading showed that the bispectra and singular values were high sensitive to the variation of structural damage. The variation of bispectra and singular values accorded with the cracks propagation of experiment records, which indicated that the bispectra and singular values can be applied to the monitoring of structural damage.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第10期1872-1879,共8页 Journal of Zhejiang University:Engineering Science
基金 浙江省重点科技创新团队资助项目(2010R50034)
关键词 结构损伤 双谱 奇异值分解(SVD) 振动 structural damage bispectrum singular value decomposition (SVD) vibration
  • 相关文献

参考文献3

二级参考文献16

  • 1王利恒,周锡元,阎维明,涂鸣.钢筋混凝土梁非线性动力特性试验研究[J].地震研究,2006,29(1):65-71. 被引量:9
  • 2任宜春,易伟建.钢筋混凝土梁的非线性振动识别研究[J].工程力学,2006,23(8):90-95. 被引量:14
  • 3刘言柱 陈文良 陈立群.振动力学[M].北京:高等教育出版社,1998..
  • 4Ruzzene M,Fasana A,Garibaldi L,Piombo B.Natural frequencies and dampings identification using wavelet transform:application to real data[J].Mechanical Systems and Signal Processing,1997,11(2):207~218.
  • 5Wong L A,Chen J C.Nonlinear and chaotic behavior of structural system investigated by wavelet transform techniques[J] International Journal of Nonlinear Mechanics,2001,36:221~235.
  • 6Kijewski T,Kareem A.Wavelet transform for system identification in civil engineering[J].Computer-Aided Civil and Infrastructure Engineering,2003,18:339~355.
  • 7Yoshihiro K.Identification of nonlinear structural dynamic systems using wavelets[J].Journal of Engineering Mechanics,1998,124(10):1059~1066.
  • 8Carmona R A,Hwang W L,Torresani B.Characterization of signals by the ridges of their wavelet transforn[J].IEEE Transaction on Signal Processing,1997,45:2586.
  • 9Tsyfansky S L, Beresnevich V L. Nonlinear vibration method for detection of fatigue cracks in aircraft wings[ J]. Journal of Sound and vibration, 2001, 236( 1 ) :49-60.
  • 10Pugno N, Suraee C, Ruotola R. Evaluation of the nonlinear dynamic response to harmonic excitation of a beam with several breathing cracks [ J ]. Journal of Sound and Vibration, 2000, 235(5) :749-762.

共引文献22

同被引文献35

  • 1高维成,刘伟,邹经湘.基于结构振动参数变化的损伤探测方法综述[J].振动与冲击,2004,23(4):1-7. 被引量:44
  • 2章立军,阳建宏,徐金梧,杨德斌.形态非抽样小波及其在冲击信号特征提取中的应用[J].振动与冲击,2007,26(10):56-59. 被引量:23
  • 3HUANG N E, SHEN Z, Long S R. A new view of nonlinear water waves: The Hilbert Spectrum1[J]. Annual Review of Fluid Mechanics, 1999, 31(1):417-457.
  • 4WU Z H, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J].Advances in Adaptive Data Analysis, 2009, 1: 1―41.
  • 5Hyv?rinen A and Oja E. Independent component analysis: a tutorial.Neural Networks[J], 2000, 13(45) : 411-430.
  • 6Hyvarinen A. Fast and robust fixed-point for independent component Analysis [J]. IEEE Transactions on Neural Networks, 1999,10(3):626—634.
  • 7Wu Z. Huang N E.Ensemble empirical mode decomposition: a noise assiste data analysis method[J]. Advances in Adaptive Data Analysis ,2009,1:1-41.
  • 8Shimizu S, Hyvarinen A, Kano Y, et al. Discovery of non-gaussian linear causal models using ICA[J]. arXiv preprint arXiv.1413, 2012,129(3):273-282.
  • 9Lei Y, He Z, Zi Y. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J].Expert Systems with Applications, 2011, 38(6): 7334-7341.
  • 10Jiang S F,Wu S Y and Dong L Q.Structural Damage Detection based on Improved Multi-Particle Swarm Coevolution Optimization Algorithm[J]. Mathematical Problems in Engineering,Vol.2014, Article ID 232763, 1-11.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部