摘要
A novel long wavelength photodetector with dual-wavelength spectral response is designed and fabricated using a step-shaped Fabry-Perot (F-P) filter structure. The step-shaped GaAs/A1GaAs distributed Bragg reflectors and the InP PIN photodetector are grown on a GaAs substrate using low pressure metal organic chemical vapor deposition. High quality GaAs/InP heteroepitaxy is realized by employing a thin low temperature buffer layer. The photodetector structure is optimized by theoretical simulation. This device has a dual-peak distance of 19 nm (1558 and 1 577 nm). The 3-dB bandwidth of 16 GHz is simultaneously obtained with peak ouantum efficiencies of 8.5% and 8.6% around 1 .55R and 1 .577 nm respectively
A novel long wavelength photodetector with dual-wavelength spectral response is designed and fabricated using a step-shaped Fabry-Perot (F-P) filter structure. The step-shaped GaAs/A1GaAs distributed Bragg reflectors and the InP PIN photodetector are grown on a GaAs substrate using low pressure metal organic chemical vapor deposition. High quality GaAs/InP heteroepitaxy is realized by employing a thin low temperature buffer layer. The photodetector structure is optimized by theoretical simulation. This device has a dual-peak distance of 19 nm (1558 and 1 577 nm). The 3-dB bandwidth of 16 GHz is simultaneously obtained with peak ouantum efficiencies of 8.5% and 8.6% around 1 .55R and 1 .577 nm respectively
基金
supported by the National"973"Pro-gram of China(No.2010CB327600)
the National Natural Science Foundation of China(No.61020106007)
the Fundamental Research Funds for the Central University(No.BUPT2011RC0403)
the National"863"Program of China(No.2007AA03Z418)
the 111 Project of China(No.B07005)
the Program for Changjiang Scholars and Innovative Research Team in University MOE,China(No.IRT0609)