期刊文献+

转基因抗虫棉棉籽组分的代谢组学研究 被引量:2

Metabonomic Study on the Composition of Insect-resistant Transgenic Cottonseeds
原文传递
导出
摘要 采用核磁共振氢谱(1H NMR)获取不同转基因抗虫棉棉籽及其非转基因对照棉籽的代谢物谱,并结合多维统计分析探查植物基因工程操作是否引发棉籽中代谢产物种类和数量的非预期改变。结果表明,不同棉籽的1H NMR谱图轮廓基本特征相似,均可分为氨基酸区、碳水化合物区及芳香区;当谱图按分区扩展后,多处峰信号在转基因与非转基因对照间有明显的不同。采用偏最小二乘法-判别分析(PLS-DA)可实现转基因抗虫棉棉籽与非转基因对照的代谢轮廓判别且分类的效果优于主成分分析(PCA)方法。转基因抗虫棉籽与其非转基因对照间的主要差异代谢物与初级氮代谢、三羧酸循环及脂肪酸代谢有关。 The term of metabolome has been used to describe the responses of plant to external perturbations recently. The study of metabolite profiling of different insect-resistant cottonseeds and their non-transgeniccounterparts using metabolic variations associated with genetic modifications. The results obtained showed that the overall appearance of the spectrum was quite similar among different cottonseeds. However, there were many different peak signals in the animo acids region (3 - 0. 5 ppm) of the expansion spectra of transgenic cottonseeds when compared with their controls. Ahhough score plots generated using principal component analysis showed the potential to distinguish transgenic cottonseeds from non-transgenic controls, a better classification between them was obtained by partial least square-discriminant analysis. The major compounds contributing to the discrimination were those metabolites that involved the metabolic pathway of fatty acid, the primary nitrogen metabolism and the tricarboxylic acid cycle.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2012年第11期35-41,共7页 China Biotechnology
基金 中央高校基本科研业务费专项基金(N090405011) 中国科学院知识创新工程项目(KZCX2-EW-413) 教育部留学回国人员科研启动基金资助项目
关键词 1H NMR 转基因抗虫棉棉籽 代谢组学 多维统计分析 安全性评价 Key words H NMR Insect-resistant transgenic cottonseeds Metabonomics Multivariate analysisSafety assessment
  • 相关文献

参考文献4

二级参考文献76

  • 1尹恒,李曙光,白雪芳,杜昱光.植物代谢组学的研究方法及其应用[J].植物学通报,2005,22(5):532-540. 被引量:31
  • 2Bailey, N.J.C., Oven, M., Holmes, E., Nicholson, J.K., and Zenk, M.H. (2003). Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via H-1 NMR spectroscopy and chemometrics. Phytochemistry 62:851-858.
  • 3Bligny, R., and Douce, R. (2001). NMR and plant metabolism. Curr. Opin. Plant Biol. 4: 191-196.
  • 4Cellini, F., Chesson, A., Colquhoun, I., Constable, A., Davies, H.V., Engel, K.H., Gatehonse, A.M.R., Karenlampi, S., Kok, E.J., Leguay, J.J., Lehesranta, S., Noteborn, H.P., Pedersen, J., Smith, M. (2004). Unintended effects and their detection in genetically modified crops. Food Chem. Toxicol. 42:1089-1125.
  • 5Charlton, A., Allnutt, T., Holmes, S., Chisholm, J., Bean, S., Ellis, N., Mullineaux, P., and Oehlsehlager, S. (2004). NMR profiling of transgenic peas. Plant Biotechnol. J. 2: 27-35.
  • 6Charlton, A.J. (2005). NMR profiling of transgenic peas. Abstracts of Papers of the American Chemical Society 229: U83-U83.
  • 7Choi, Y.H., Kim, H.K., Linthorst, H.J.M., Hollander, J.G., Lefeber, A.W.M., Erkelens, C., Nuzillard, J.M., and Verpoorte, R. (2006). NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tabacum leaves. J. Nat. Prod. 69: 742-748.
  • 8Conner, A.J., and Jacobs, J.M.E. (1999). Genetic engineering of crops as potential source of genetic hazard in the human diet. Mutat. Res. 443: 223-234.
  • 9Krishnan, P., Kruger, N.J., and Ratcliffe, R.G. (2005). Metabolite f'mgerprinting and profiling in plants using NMR. J. Exp. Bot. 56: 255-265.
  • 10Kuiper, H.A., Kleter, G.A., Noteborn, H.P.J.M., and Kok, E.J. (2001). Assessment of the food safety issues related to genetically modified foods. Plant J. 27: 503-528.

共引文献129

同被引文献100

  • 1李欣,黄昆仑,朱本忠,唐茂芝,罗云波.利用“组学”技术检测转基因作物非期望效应的潜在性[J].农业生物技术学报,2005,13(6):802-807. 被引量:6
  • 2FERNIE A R.The future of metabolic phytochemistry:larger numbers of metabolites,higher resolution,greater understanding[J].Phyto chemistry,2007,68(22):2 861-2 880.
  • 3VERPOORTE R,CHOI Y,KIM H.NMR-based metabolomics at work in phytochemistry[J].Phytochemistry Reviews,2007,6(1):3-14.
  • 4FIEHN O.Metabolomics the link between genotypes and phenotypes[J].Plant Molecular Biology,2002,48(1-2):155-171.
  • 5BINO R J,HALL R D,FIEHN O,et al.Potential of metabolomics as a functional genomics tool[J].Trends in Plant Science,2004,9(9):418-425.
  • 6HARTMANN T.From waste products to ecochemicals:fifty years research of plant secondary metabolism[J].Phytochemistry,2007,68 (22):2 831-2 846.
  • 7PUTRI S P,NAKAYAMA Y,MATSUDA F,et al.Current metabolomics:practical applications[J].Journal of Bioscience and Bioengi neering,2013,115(6):579-589.
  • 8KHAKIMOV B,BAK S,ENGELSEN S B.High-throughput cereal metabolomics:Current analytical technologies,challenges and perspec tives[J].Journal of Cereal Science,2013,30:1-30.
  • 9DUNN W B,ELLIS D I.Metabolomics:current analytical platforms and methodologies[J].TrAC Trends in Analytical Chemistry,2005,24(4):285-294.
  • 10H(E)DIJI H,DJEBALI W,CABASSON C,et al.Effects of long-term cadmium exposure on growth and metabolomic profile of tomato plants[J].Ecotoxicology and Environmental Safety,2010,73(8):1 965-1 974.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部