期刊文献+

基于经验模态分解的地震波特征提取的研究 被引量:15

Study on seismic signal features extraction based on EMD
下载PDF
导出
摘要 本文原始数据为35个天然地震和27个人工爆破事件的离震中最近的5个台站的垂直分量波形数据.从原始波形数据分别提取最大振幅对应的周期、倒谱的方差、自相关函数的最大值3个特征.依据希尔伯特-黄变换原理,用经验模态分解方法把原始波形信号分解为10个左右的本征模态函数分量后,再从每个分量中分别提取这3个特征.接着对所获取的特征样本集合采用随机划分法分为学习样本集与检验样本集,然后再通过支持向量机进行分类识别,如此反复进行多次样本划分和分类识别.结果表明经验模态分解后的分量信号提取的这3个特征具有更高的识别率,说明了经验模态分解有利于识别天然地震和人工爆破事件,值得进一步深入研究. The research on seismic signal processing,analysis,and further discrimination of earthquakes and explosions plays a fundamental role in the development of seismology and other geosciences.And explosion event recognition,especially nuclear explosion recognition,is indispensable for public welfare and world peace.This paper introduces some important results of our research project:"Classification and Decision Support System for Recognizing Natural Earthquake Events and Explosion Events".The selected raw data are the up-down components of 5 observatory stations which are the nearest ones to the epicenters of 35 earthquake events occurred during the years of 2003~2007 and 27 explosion events occurred during the years of 2002~2008.From the raw waveform data,3 features:ratio of the maximal amplitude of S-Wave and P-Wave,cepstral variance,maximum of autocorrelation,are extracted.And based upon Hilbert-Huang Transform(HHT) principle,by means of empirical mode decomposition(EMD) method,original waves are decomposed into about 10 intrinsic mode functions(IMFs).These 3 features are also extracted from each of the IMFs for every selected wave signals.The acquired about features samples are randomly partitioned into training sample set and testing sample set.Finally,Support vector machine(SVM) classifier for discriminating earthquake and explosion events are built and trained by training sample set and tested by testing sample set.Such a process of samples-partition,training,testing are reiterated 100 times.The results show that these 3 features extracted from IMFs after EMD is better than those extracted from raw signal with higher correct recognition rate.This implies EMD processing of seismic wave is beneficial for recognition of earthquake and explosion events and deserves more intensive research.
出处 《地球物理学进展》 CSCD 北大核心 2012年第5期1890-1896,共7页 Progress in Geophysics
基金 地震行业科研专项基金(200808003)资助.课题负责人边银菊
关键词 经验模态分解 支持向量机 地震波 波形特征 识别 empirical mode decomposition support vector machine seismic wave wave features recognition
  • 相关文献

参考文献25

  • 1安镇文,郭祥云,边银菊,魏富胜.核爆炸与地震识别研究进展[J].国际地震动态,2008,29(8):22-31. 被引量:9
  • 2和雪松,李世愚,沈萍,冯全雄.用小波包识别地震和矿震[J].中国地震,2006,22(4):425-434. 被引量:32
  • 3刘庆敏,杨午阳,李书平,何欣.希尔伯特-黄变换在地震资料处理中的应用[J].西北地震学报,2009,31(3):211-216. 被引量:12
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis. Proceedings of the Royal Society of London,1998,454(1971):903-995.
  • 5Hassan H H. Empirical Mode Decomposition (EMD) of potential field data: airborne gravity data as an example. SEG Expanded Abstracts, 2005 : 704-706.
  • 6Magrin-Chagnolleau I, Baraniuk R G. Empirical mode decomposition based time-frequency attributes. SEG Meeting, 1999.
  • 7Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert Spectrum. Annual Review of Fluid Mechanics, 1999,31 : 417-457.
  • 8Huang N E, Wu M L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London, 2003,4,59 (2037): 2317-2345.
  • 9李夕兵,张义平,刘志祥,左宇军,王卫华.爆破震动信号的小波分析与HHT变换[J].爆炸与冲击,2005,25(6):528-535. 被引量:69
  • 10孙涛,刘晶塬,孔凡,等.小波变换和希尔伯特-黄变换在时频分析中的应用.中国水运(理论版),2006,4(11):17-19.

二级参考文献287

共引文献470

同被引文献184

引证文献15

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部