期刊文献+

超声图像的LBP纹理特征提取 被引量:5

LBP Texture Features Extraction in Ultrasound Images
原文传递
导出
摘要 采用改进的均匀化LBP(局部二值模式)算子,将散点及小斑点的均匀化LBP码设置为其邻域均值,并通过各向异性扩散滤波抑制超声图像噪声,消除超声图像中斑点噪声和散点对纹理提取的影响,以实现对超声图像的LBP纹理特征的有效提取.实验结果表明,本文算法与传统均匀化LBP的算法相比,获得的纹理特征图像LBP码的占有比例有所提高,消除了LBP纹理图像中散点的影响,能较好地描述超声图像的纹理信息. An improved uniform LBP(local binary pattern) operator is introduced in the paper to extract the texture features of ultrasonic images effectively. This new operator resets the uniform LBP code of scatters and small speckles to its mean of the neighborhood, then it can effectively suppress the noise and eliminate the negative effect of texture extraction by the speckle noise and scatters in ultrasound images with anisotropic diffusion. The results of experiments show that this method can get higher proportions of LBP uniform pattern and better texture information of ultrasound images than the traditional extraction methods with uniform LBP operator, and decrease the bad influence of scatters on LBP texture images.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2012年第5期401-405,共5页 Journal of Wuhan University:Natural Science Edition
基金 国家重点基础研究发展规划(973)项目(2011CB707904)资助
关键词 超声图像 LBP(局部二值模式) 纹理 各向异性扩散 特征提取 ultrasound images LBP(local binary pattern) texture anisotropic diffusion feature extraction
  • 相关文献

参考文献7

  • 1Randen T, Husoy J H. Filtering for texture classifica- tion..A comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 (4) :291-310.
  • 2Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions[J]. Pattern Recognition, 1996,29 (1) :51-59.
  • 3Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns[C]//European Conference on Computer Vision LNCS , 2004,3021:469-481.
  • 4Kellokumpu V, Zhao G, Pietikainen M. Texture based description of movements for activity analysis[C]//In- ternational Conference on Computer Vision Theory and Applications. 2008:206-213.
  • 5Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 (7) :971-987.
  • 6Ojala T,Pietikainen M. Unsupervised texture segmen- tation using feature distributions[J]. Pattern Recogni- tion, 1999,32(2) : 477-486.
  • 7Perona P, Malik J. Scale-space and edge detection u- sing anisotropic diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (7) : 629-639.

同被引文献59

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2卿湘运,段红,魏俊民.基于局部熵的织物疵点检测与识别的研究[J].纺织学报,2004,25(5):57-58. 被引量:32
  • 3王永皎,张引,张三元.基于图像处理的植物叶面积测量方法[J].计算机工程,2006,32(8):210-212. 被引量:26
  • 4汪源源,沈嘉琳,王涌,王怡.基于形态特征判别超声图像中乳腺肿瘤的良恶性[J].光学精密工程,2006,14(2):333-340. 被引量:15
  • 5He D C and Wang L. Texture unit, texture spectrum, andtexture analysis[J]. IEEE Transactions on Remote Sensing,1990, 28(4): 509-512.
  • 6Ojala T,Pietikainen M,and Harwood D. A comparativestudy of texture measures with classification based on featuredistributions[J].Pattern Recognition, 1996, 29(1): 51-59.
  • 7Ojala T, Pietikainen M, and Maenpaa T. Multi-resolutiongrayscale and rotation invariant texture classification withlocal binary patterns [J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 2002,24(7): 971-987.
  • 8Guo Z H, Zhang L, Zhang D, et al" Rotation invarianttexture classification using adaptive LBP with directionalstatistical features[C]. Proceedings of the 17th IEEEInternational Conference on Image Processing, Hong Kong,China, 2010: 285-288.
  • 9Guo Z H, Zhang L, and Zhang D. Rotation invariant textureclassification using LBP variance (LBPV) with globalmatching[J]. Pattern Recognition, 2010, 43(3): 706-719.
  • 10Tan X and Triggs B. Enhanced Local Texture Feature Setsfor Face Recognition under Difficult Lighting Conditions[M].Berlin Heidelberg Springer, 2007: 168-182.

引证文献5

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部