期刊文献+

Indecomposable Large Sets of Steiner Triple Systems with Indices 5, 6

Indecomposable Large Sets of Steiner Triple Systems with Indices 5, 6
原文传递
导出
摘要 A family (X, B1),(X, B2),..., (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly A STS(v)s of the collection. It is indecomposable and denoted by IDLSTSx(v) if there does not exist an LSTSx, (v) contained in the collection for any λ 〈 λ. In this paper, we show that for λ = 5, 6, there is an IDLSTSλ(v) for v ≡ 1 or 3 (rood 6) with the exception IDLSTS6(7). A family (X, B1),(X, B2),..., (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly A STS(v)s of the collection. It is indecomposable and denoted by IDLSTSx(v) if there does not exist an LSTSx, (v) contained in the collection for any λ 〈 λ. In this paper, we show that for λ = 5, 6, there is an IDLSTSλ(v) for v ≡ 1 or 3 (rood 6) with the exception IDLSTS6(7).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第11期2169-2184,共16页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10971051 and 11071056)
关键词 Steiner triple system large set candelabra system INDECOMPOSABLE Steiner triple system, large set, candelabra system indecomposable
  • 相关文献

参考文献1

二级参考文献15

  • 1Cayley A.On the triadic arrangements of seven and fifteen things. London Edinburgh Dublin Philos Mag J Sci . 1850
  • 2Fu C M K.The intersection problem for pentagon systems. . 1987
  • 3Ji L.A new existence proof for large sets of disjoint Steiner triple systems. Journal of Combinatorial Theory Series A . 2005
  • 4Lindner C C,Rosa A.Construction of large sets of almost disjoint Steiner triple systems. Canadian Journal of Mathematics . 1975
  • 5Rosa A.A theorem on the maximum number of disjoint Steiner triple systems. Journal of Combinatorial Theory Series A . 1975
  • 6Teirlinck L.On the maximum number of disjoint triple systems. Discrete Mathematics . 1973
  • 7Teirlinck L.A completion of Lu’s determination of the spectrum of large sets of disjoint Steiner triple systems. Journal of Combinatorial Theory Series A . 1991
  • 8Mohácsy,H.,Ray-Chaudhuri,D. K.Candelabra systems and designs. Journal of Statistical Planning and Inference . 2002
  • 9Kirkman TP.On a problem in combinations. Cambridge and Dublin Mathematics Journal . 1847
  • 10Hartman,A.,Phelps,K. T.,Dinitz,J. H.,Stinson,D. R.Steiner quadruple systems. Contemporary Design Theory . 1992

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部