摘要
A family (X, B1),(X, B2),..., (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly A STS(v)s of the collection. It is indecomposable and denoted by IDLSTSx(v) if there does not exist an LSTSx, (v) contained in the collection for any λ 〈 λ. In this paper, we show that for λ = 5, 6, there is an IDLSTSλ(v) for v ≡ 1 or 3 (rood 6) with the exception IDLSTS6(7).
A family (X, B1),(X, B2),..., (X, Bq) of q STS(v)s is a λ-fold large set of STS(v) and denoted by LSTSλ(v) if every 3-subset of X is contained in exactly A STS(v)s of the collection. It is indecomposable and denoted by IDLSTSx(v) if there does not exist an LSTSx, (v) contained in the collection for any λ 〈 λ. In this paper, we show that for λ = 5, 6, there is an IDLSTSλ(v) for v ≡ 1 or 3 (rood 6) with the exception IDLSTS6(7).
基金
Supported by National Natural Science Foundation of China (Grant Nos. 10971051 and 11071056)