期刊文献+

Oscillation for a Class of Diffusive Hematopoiesis Model with Several Arguments

Oscillation for a Class of Diffusive Hematopoiesis Model with Several Arguments
原文传递
导出
摘要 By considering solution curve's or surface's composition of the functions of several variables and constructing the suitable lower-upper solution pair for the following special diffusive Hematopoiesis modelunder Neumann boundary condition, sufficient conditions are provided for the oscillation of the positive equilibrium for (0.1). Moreover, these results extend or complement existing results. By considering solution curve's or surface's composition of the functions of several variables and constructing the suitable lower-upper solution pair for the following special diffusive Hematopoiesis modelunder Neumann boundary condition, sufficient conditions are provided for the oscillation of the positive equilibrium for (0.1). Moreover, these results extend or complement existing results.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第11期2345-2354,共10页 数学学报(英文版)
基金 supported by Tianyuan Fund of Mathematics (Grant No. 10826058) from National Natural Sciences Foundation of China MITACS Canada-China Thematic Program
关键词 Partial functional differential equations lower-upper solution pair OSCILLATION Partial functional differential equations, lower-upper solution pair, oscillation
  • 相关文献

参考文献17

  • 1Mackey, M. C., Glass, L.: Oscillation and chaos in physiological control system. Science, 197, 287-289 (1977).
  • 2Gopalsamy, K., Kulenovic, M. R. S., Ladas, G.: Oscillation and global attractivity in models of hematopoiesis. J. Dyn. Diff. Eqns., 2, 117-132 (1990).
  • 3Saker, S. H.: Oscillation and global attractivity in hematopoiesis model with delay time. Applied Mathe- matics and Computation, 136, 241-250 (2003).
  • 4Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Press, Boston, 1992.
  • 5Karakostas, G., Philos, Ch. G., Sficas, Y. G.: Stable steady state of some population models. J. Dyn. Diff. Eqns., 4(1), 161-190 (1992).
  • 6Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
  • 7Redlinger, R.: On Volterras population equation with diffusion. SIAM J. Math. Anal., 16, 135-142 (1985).
  • 8Redlinger, R.: Exitence-theorems for semiliner parabolic systems with functional. Nonlinear Anal. TMA, 8, 667-682 (1984).
  • 9Wang, X., Li, Z. X.: Oscillations lor a diflusive Nicholson blowflies equation with several arguments. Appl. Math. J. Chinese Univ., Set. A, 20(3), 265-274 (2005).
  • 10Wang, X., Li, Z. X.: Dynamics for a class of general reaction diffusion model. Nonlinear Anal. TMA, 67, 2699-2711 (2007).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部