摘要
本文介绍一种研究M/α-Si势垒的方法.利用Riemann-Stieltjes积分的中值定理,定义了一个α-Si的“有效隙态密度g(E_t)”,利用g(E_t),M/α-Si势垒区泊松方程很容易解析求解.在静态(外加偏压V_0=0)情形下,这个解是一个类指数衰减函数,其随距离x的衰减速率取决于g(E_i),而与α-Si隙态密度分布函数g(E)的具体形式没有直接关系.对本研究所用的实验样品Cr/α-Si:H,已经测得其α-Si的有效隙态密度是g(E_i)=6×10^(15)~1.5×10^(16)cm^(-3)eV^(-1)
In this paper we present a method studying the barrier of M/α-Si. We have defined a physical quantity of α-Si as the effective gap state density g(Et), in terms of the mean-value-theorem of Rlemann-Stieltjes integral. With the aid of g(Ei), it is easy to solve analytically the Poisson's equation in the barrier region of M/α-Si. In the static state(the applied voltage V0=0) the solution of this equation is an exponential-decay-like function. The decaying rate with χ is determined by g(Ei) and does not directly depend on the form of the distribution function g(E) of the gap state density of α-Si. In the sample of Cr/α-Si:H, we have measured the g(Ei) of about (6 × 1015-1.5×l016)cm-3eV-1.
出处
《固体电子学研究与进展》
CAS
CSCD
北大核心
1990年第1期85-93,共9页
Research & Progress of SSE