期刊文献+

Banach空间中立形微分包含的近似可控性 被引量:1

Approximate Controllability for Function Differential in Banach Space
下载PDF
导出
摘要 应用集值函数不动点定理来研究Banach空间中微分包含的近似可控性. In this paper,we prove approximate controllability result for functional differential in Banach space by using suitable fixed-point theorems for multivalued map.
机构地区 哈尔滨师范大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2011年第6期24-28,共5页 Natural Science Journal of Harbin Normal University
基金 黑龙江省教育厅科学技术资助项目(11531248)
关键词 近似可控 不动点 集值函数 半群 子空间 Approximate controllability Fixed point Multi-valued function Semi-group Subspace
  • 相关文献

参考文献11

  • 1Bashirov A E, Mabmudov N I. On concepts of controllability for linear deterministic and stochastic systems. SIAM J Control Optim, 1999,37 : 1808 - 1821.
  • 2Naito K. Controllability of semilinear control system domina- ted by the linear part. SIAM J. Control Optim, 1987,25:715 - 722.
  • 3Approximate controllability for trajectories of semilinear control system J. Optim. Theory Appl,1989 ,60 :57 - 65.
  • 4Zhou H X. Approximate controllability for a class of semilinear abstract equations. SIAM J Control Optim, 1983,21:551 - 565.
  • 5Dauer J P, Mahmudov N I. Approximate controllability of semilinear functional equation in Hilbert spaces. J Math Anal Appl, 2002,237:310 - 327.
  • 6Deimling K. Multiualued Differential Equations, Walter de Gruyter, Berlin,Germany, 1992.
  • 7Hu S, Papageorgiou N. Handbook of Multiflalued Analysis, Volume 1 : Theory, Kluwer Academic Publishers, Dordrecht, Holland, 1997.
  • 8Banas J, Goebel K. Measures of Noleompaetness in Banaeh Spaces,Marcel Dekker, New York, N Y, 1980.
  • 9Martelli M. A Rothe' s Type Theorem for Noncompact Acyclic - Valued Map, Bollettino dell ' Unione Matematica Italiana, 1975( 11 ) :70 -76.
  • 10Yamamoto M, Park J Y. Controllability for parabolic equations with uniformly bounded nonlinear terms. J Optim. Theory Appl,1990,66:515 - 532.

同被引文献7

  • 1Byszewski L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal cauchy problem, [J]. Math ArM Appl, 1991, 162:494 -505.
  • 2Benchohra M, Ntouyas S K, Controllability of second - order differential inclusions in Banach spaces with nonlocal condi- tions[J]. Optim Theory Appl, 2000, 107:559 -571.
  • 3Benchohra M, Ntouyas S K, Controllability for an infinite - time horizon of second - order differential inclusions in Banach spaces with nonlocal conditions [ J ]. Optim Theory Appl, 2001, 109:85-98.
  • 4Chang Y K, Li W T. Controllability of second - order differ- ential and integrodifferential inclusions in Banaeh spaces[ J] . Optim Theory Appl, 2006, 129:77 - 87.
  • 5Lasota A, Opial Z. An application of the Kakutani - Ky - Fan theorem in the theory of ordinary differential equations [ J ]. Bull Acad Polon Sci, 1965, 13:781 -786.
  • 6Ma T W. Topological degrees for set - valued compact vector fields in locally convex spaces[ J]. Diss Math, 1972, 92 : 1 - 43.
  • 7于金凤,陈安妮.带有非局部条件二阶微分包含的可控性[J].数学学报(中文版),2010,53(5):871-880. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部