摘要
探讨了幕墙玻璃在纵力和侧力的共同作用下的内力和变形根据实际的变形状态运用大挠度的非线性理论 .运用加权残值法的概念 ,取五次 B样条作为未知函数的试函数 ,采用最小二乘配点法 ,在配点上建立残值方程 ,通过消除残值最终求得基本未知量 .这种方法与传统有限元相比 ,具有未知量少、自由度少、连续性强。
This paper deals with the inner force and deformation of curtain wall glass caused by vertical and side forces by using nonlinear theory of large deflection.The approach used in the paper is to apply the cocept of method of weighted residuals,choose the fifth B splines as trial function,and use the least square collection method to establish residual equations so that the unknown quantity can be obtained by removing residuals.Compared with the method for finite element,this mathod is employed with the least unkown quantities and degrees of freedom,has a high continuity and is easy to meet the boundary conditions.
出处
《西安建筑科技大学学报(自然科学版)》
EI
CSCD
2000年第2期119-122,共4页
Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金
河南省自然科学基金资助项目! ( 9540 4 0 1 0 0 )
关键词
玻璃幕墙
加权残值法
大挠度
试函数
高层建筑
glass urtain walls
method of weighed residuals
large deflection
trial function