期刊文献+

高指数晶面裸露的贵金属纳米晶体的合成 被引量:6

Progresses on syntheses of the noble-metal nanocrystals with exposed high-index facets
原文传递
导出
摘要 由于在高指数晶面上存在高密度的台阶位、扭结位原子等,高指数晶面裸露的贵金属纳米晶体一般表现出优越的物理化学性能,在催化、电化学等方面都有很重要的应用前景.近年来,研究人员围绕高指数晶面的制备进行了大量的工作并取得了一定进展.本文重点从合成制备方法的角度出发,结合本课题组的相关研究,系统总结了现有的有关制备高指数晶面裸露的贵金属纳米晶体的一些最新研究成果.从电化学方法、"帽"式试剂保护法、欠电位沉积原子层保护法、动力学调控、氧化刻蚀溶解再生长法以及模板法等几个方面对现有的高指数晶面裸露的贵金属纳米晶体的制备进行了总结. Due to the presence of high-density atoms on the steps and kinks, the noble-metal nanocrystals with high-index facets usually perform superb phisical/chemical properites and have important applications in catalysis and electrochemistry etc. In recent years, the syntheses of noble-metal nanocrystals with high-index facets has become a hot research topic, and important progresses have been proceeded. This review summarized achivements about the syntheses of noble-metal nanocrystals with high-index facets exposed. We specially focused on the systhetic methods from the aspects of electrochemical method, capping agent method, under-potential- deposition of foreign metal atoms, kinetic control, oxdative etching and growth, and templated method.
出处 《中国科学:化学》 CAS CSCD 北大核心 2012年第11期1513-1524,共12页 SCIENTIA SINICA Chimica
基金 国家重点基础研究发展计划(973计划)(2011CBA00508) 国家自然科学基金(21131005 21021061 21073145 21171141)的资助
关键词 高指数晶面 贵金属 纳米晶体 合成 high-index facets, noble metals, nanocrystals, synthesis
  • 相关文献

参考文献53

  • 1Zheng YQ, Tao J, Liu HY, Zeng J, Yu T , Ma YY, Moran C, Wu LJ, Zhu YM, Liu JY, Xia Y. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation. Small, 2011, 7(16): 2307-2312.
  • 2Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science, 2009, 324: 1302-1305.
  • 3Gasteiger AH, Kocha SS, Sompalli B, Frederick T. Wagner FT. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B-Environ, 2005, 56: 9-36.
  • 4Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater, 2007, 6 (9): 692-697.
  • 5Hu B, Ding K, Wu T, Zhou X, Fan H, Jiang T, Wang Q, Han B. Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chem Commun. 2010, 46 (45): 8552.
  • 6Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res, 2010, 4 (1): 83-91.
  • 7Yin Z, Zheng H, Ma D, Bao X. Porous palladium nanoflowers that have enhanced methanol electro-oxidation activity. J Phys Chem C, 2009, 113 (3): 1001-1005.
  • 8Bai ZY, Yang L, Li L, Lv J, Wang K, Zhang J. A facile preparation of hollow palladium nanosphere catalysts for direct formic acid fuel cell. J Phys Chem C, 2009, 113: 10568-10573.
  • 9Mazumder V, Sun S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J Am Chem Soc, 2009, 131: 4588-4589.
  • 10Narayanan R, El-Sayed MA. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett, 4(7): 1343-1348.

共引文献6

同被引文献37

  • 1沈星灿,袁琦,梁宏,闫海刚,何锡文.Hysteresis effects of the interaction between serum albumins and silver nanoparticles[J].Science China Chemistry,2003,46(4):387-398. 被引量:4
  • 2SHEN XingCan,JIN Tao,XIE Jun,LIANG Hong,YAN Yu.Studies on the biomimetic membrane interaction between liposome and realgar nanoparticles[J].Science China Chemistry,2009,52(9):1512-1518. 被引量:1
  • 3汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳,王海芳,贾光.纳米材料生物效应及其毒理学研究进展[J].中国科学(B辑),2005,35(1):1-10. 被引量:100
  • 4沈星灿,刘新艳,梁宏,卢昕.牛血红蛋白与银纳米粒子相互作用的光谱研究[J].化学学报,2006,64(6):469-474. 被引量:23
  • 5L?vestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N, Putaud JP, Stamm H. JRC Reference Report: Considerations on a Definition of Nanomaterial for Regulatory Purposes. Luxembourg: Publications Office of the European Union. 2010, 1-36.
  • 6(a) Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev, 2005, 105(4): 1025-1102;.
  • 7Grieneisen ML, Zhang MH. Nanoscience and nanotechnology: Evolving definitions and growing footprint on the scientific landscape. Small, 2011, 7(20): 2836-2839.
  • 8(b) Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev, 2004, 104(1): 293-346.
  • 9Somorjai G A. New model catalysts (platinum nanopar-ticles) and new techniques (SFG and STM) for studies of reaction intermediates and surface restructuring at high pressures during catalytic reactions[J]. Applied Surface Science, 1997, 121: 1-19.
  • 10Jeong S, Woo K, Kim D, et al. Controlling the thick- ness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet print- ing[J]. Advanced Functional Materials, 2008, 18 (5) : 679 -686.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部