期刊文献+

网络化神经网络的时滞依赖稳定性判据(英文) 被引量:1

Delay-dependent stability criteria for network-based neural networks
下载PDF
导出
摘要 本文研究了网络化神经网络的稳定性问题.首先,为了利用网络系统的采样特征,定义了一个新的Lyapunov泛函;通过分析网络诱导时延和执行周期之间的关系,采用一个迭代凸组合技术,得到了一个包含较少保守性的稳定性判据.然后,给出一个基于采样数据的神经网络稳定性判据,减少了计算复杂性.最后,通过一个数例,验证了本文方法的有效性和优越性. This paper investigates the problem of stability of network-based neural networks (NNs). To exploit the sampling characteristic of network systems, we define a new type of Lyapunov functional. By analyzing the relation between the network-induced delay and the executive duration, and employing an iterative convex combination technique, we develop a less conservative stability criterion for network-based NNs. To reduce the computational complexity, we also propose a stability criterion for sampled-data-based NNs. An illustrative example is given to show the effectiveness and the advantages of the proposed method.
作者 朱训林 岳东
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2012年第9期1169-1175,共7页 Control Theory & Applications
基金 supported by the National Nature Science Foundation of China(No.61174085,61074025,60834002)
关键词 神经网络 采样控制 稳定性条件 neural networks (NNs) sampled-data control stability criteria
  • 相关文献

参考文献25

  • 1XU S, LAM J, HOD W C. A new LMI condition for delay dependent asymptotic stability of delayed Hopfield neural networks [J]. IEEE Transactions on Circuits and Systems 1I: Express Briefs, 2006, 53(3): 230 - 234.
  • 2WANG Z, LIU Y, LI M, et al. Stability analysis for stochastic Cohen- Grossberg neural networks with mixed time delays [J]. IEEE Trans- actions on Neural Networks, 2006, 17(3): 814 - 820.
  • 3PARK J H. Robust stability of bidirectional associative memory neu- ral networks with time delays [J]. Physics Letters A, 2006, 349(6): 494 - 499.
  • 4LIAO X F, CHEN G, SANCHEZ E N. Delay-dependent exponential stability analysis of delayed neural networks: An LMI approach [J]. Neural Networks, 2002, 15(7): 855 - 866.
  • 5XU S, LAM J, HOD W C, et al. Novel global asymptotic stability criteria for delayed cellular neural networks [J]. IEEE Transactions on Circuits and Systems H: Express Briefs, 2005, 52(6): 349 - 353.
  • 6HUA C C, LONG C N, GUAN X E New results on stability analysis of neural networks with time-varying delays [J]. Physics Letters A, 2006, 352(4/5): 335 - 340.
  • 7SINGH V, Global robust stability of delayed neural networks: An LMI approach [J]. 1EEE Transactions on Circuits and Systems 11: Express Briefs, 2005, 52(1): 33 - 36.
  • 8CAO J D, WANG J. Global exponential stability and periodicity of recurrent neural networks with time delays [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(5): 920 - 931.
  • 9WANG Z, HOD W C, LIU X. State estimation for delayed neural networks [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 279 - 284.
  • 10LIU X, TEO K L, XU B. Exponential stability of impulsive highorder Hopfield-type neural networks with time-varying delays [J]. IEEE Transactions on Neural Networks, 2005, 16(6): 1329 - 1339.

同被引文献14

  • 1LIN C H, HSIEH C Y, CHEN K H. A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging [J].IEEE Trans Circuits Syst I, 2010, 57(2):506-517.
  • 2SHEIKHAN M, PARDIS R, GHARAVIAN D. State of charge neu- ral computational models for high energy density batteries in elec- tric vehicles [J]. Neural Computing and Applications, 2012, 22(6): 1171-1180.
  • 3LIU Z, WANG Y, DU J, et al. RBF network-aided adaptive un- scented Kalman filter for lithium-ion battery SOC estimation in electric vehicles [J]. IEEE Transactions on Industrial Electronics, 2011, 12(9):1673-1677.
  • 4KIM T, QIAO W, QU L. Real-time state of charge and electrical impedance estimation for lithium-ion batteries based on a hybrid battery model [J]. IEEE Transactions on Industrial Electronics, 2013, 13(8):563-568.
  • 5STAIANO A, TAGLIAFERRI R, PEDRYCZ W. Improving RBF networks perfornmnce in regression tasks by means of a supervised fuzzy clustering[J]. Neurocomutine, 2006.69(8/: 1570-1581.
  • 6CHANG W f Estimation of the stateof clarge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA [J]. International Journal of Electrical Power & Energy Systems, 2013, 53(12):603-611.
  • 7GAN M, PENG H, DONG X P. A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction [J]. Applied Mathematical Modelling, 2012, 36(7):2911- 2919.
  • 8HASHEMI A B,MEYBODI M R. A note on the learning automata based algorithms for adaptive parameter selection in PSO [J].Ap- plied Soft Computing Journal, 2011, 11(1): 689-705.
  • 9FASIHFAR Z, HADDADNIA J. Designing a fuzzy RBF neural network with optimal number of neuron in hidden layer and effect of signature shape for persian signature Recognition by Zemike moments and PCA [C]//Proceedings of 2010 Intemational Confer- ence on Web Information Systems and Mining, WISM.Sanya,Chi- na:WISM,2010:188-192.
  • 10NIE P, GENG J, QIN Z G. Self-adaptive inertia weight PSO test case generation algorithm considering prematurity restraining [J]. JDCTA: International Journal of Digital Content Technology and its Applications, 2011, 5(9): 125-133.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部