期刊文献+

阻尼Boussinesq方程初边值问题解的渐近性 被引量:1

The asymptotics of solution for a damped Boussinesq equation with initial boundary conditions
原文传递
导出
摘要 运用Fourier变换和扰动方法研究了一类广义阻尼Boussinesq方程初边值问题,在古典空间中得到了这类Boussinesq方程整体解的存在唯一性和形式解的长时间渐近性. By means of Fourier techniques and perturbation method, the existence and uniqueness of global solution for a generalized damped Boussinesq equation with initial boundary are established in a classical space. The long time asymptotic behavior of the formal approximation solution is obtained.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期621-628,共8页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(11161024) 吉安市指导性计划基金资助项目(吉市科计字[2011]32号)
关键词 BOUSSINESQ方程 初边值问题 整体解 渐近性 Boussinesq equation initial boundary problem global solution asymptotics
  • 相关文献

参考文献3

二级参考文献30

  • 1朱朝生.带调和势的非线性Shrdinger方程整体吸引子的维数估计(英文)[J].西南师范大学学报(自然科学版),2005,30(5):788-791. 被引量:7
  • 2陈大学,周树清.高阶非线性中立型微分方程的振动性[J].湖南师范大学自然科学学报,2006,29(1):1-4. 被引量:6
  • 3陈大学,周树清,龙玉花.一类二阶中立型非线性阻尼泛函微分方程的振动准则[J].湖南工程学院学报(自然科学版),2006,16(3):68-72. 被引量:2
  • 4TEMAM R. Infinite dimensional dynamical systemsin mechanics and physics [ M ]. New York:Spinger.Velag, 1988.
  • 5GUO Bo-ling, HAN Yong-qian, XIN Jie. Existence of the global smooth solution to the period boundary of fractional nonlinear Schrodinger equation [ J ]. Applied Mathematics and Computation, 2008,204:468-477.
  • 6LIN Guo-guang,GAO Hong-jun. Asymptotic dynamical difference between the nonloeal and Local Swift- Hohenberg models [ J]. Journal of Mathematical Physics ,2000,41 (4) :2 077-2 089.
  • 7GLIDAGLIA J M. Finite dimensional behavior for weahly damped driven Schrodinger equation [ J ]. Annales de Institnt Henri Poineare Anal non Lineaire, 1988,5(4) :365-405.
  • 8Bona, L., Chen, M., Saut, J. C.: Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory. Nonlinearity, 17, 925-952 (2004).
  • 9Bona, L., Sachs, L.: Global existence of smooth solutions and stability theory of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 118, 15-29 (1988).
  • 10Linares, F.: Global existence of small solutions for a generalized Boussinesq equation. J. DiI-. Eqn., 106, 257-293 (1993).

共引文献4

同被引文献10

  • 1顾永耕.抛物型方程的解熄灭(extinction)的充要条件[J].数学学报(中文版),1994,37(1):73-79. 被引量:21
  • 2CHUNG S Y, BERENSTEIN C A. ω- Harmonic function and inverse conductivity problems on networks [ J ]. SIAM J Appl Math,2005,56(4) :1 200- 1 226.
  • 3CHUNG S Y, CHUNG Y S, KIM J H. Diffusion and elastic equations on networks[ J]. Publ Res Inst Math Sci ,2007,43 (3) : 699- 725.
  • 4TRINAJSTIC N,BABIC D,NIKOLI S. The Laplaeian matrix in chemistry[J]. J Chem Inf Comput Sei,1994,34(2) :368- 376.
  • 5ZAKRZEWSKI W J. Laplacians on lattices[ J]. J Nonlinear Math Phys ,2005,12(4) :530- 538.
  • 6ELMOATAZ A, LEZORAY O, BOUGLEUX S. Nonlocal discrete regularization on weighted graphs:a framework for image and manifold processing [ J ]. IEEE Tans Image Process, 2008,17 (7) : 1 047 - 1 060.
  • 7TA V T, LEZORAY O, ELMOATAZ A, et al. Graph -based tools for microscopic cellular image segmentation [ J ]. Pattern Recognition, 2009,42 (6) : 1 113- 1 125.
  • 8CHUNG Y S, LEE Y S, CHUNG S Y. Extinction and positivity of the solutions of the heat equations with absorption on net- works[J]. J Math Anal Appl,2011,380(2) :642- 652.
  • 9WOJCIECHOWSIK R K. Heat kerel and essential spectrum of infinite graphs [ J ]. Indiana University Mathematics Journal, 2009,58(2) :1 419- 1 441.
  • 10陈大学,周树清,夏学文,龙玉花.偶数阶非线性中立型阻尼微分方程的振动性与渐近性[J].云南大学学报(自然科学版),2007,29(6):551-559. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部