期刊文献+

基于蛙跳算法与Otsu法的图像多阈值分割技术 被引量:5

Multilevel thresholding segmentation based on shuffled frog leaping algorithm and Otsu method
原文传递
导出
摘要 为了快速准确地确定多阈值图像分割中的最佳阈值,提出了一种基于蛙跳算法与Otsu法相结合的多阈值图像分割方法.该方法将多阈值求解看作一种多变量的组合求解优化问题,利用多阈值Otsu法设计分割目标函数,将新兴的仿生学优化求解算法——蛙跳算法引入到图像分割技术中,通过蛙跳算法中全局搜索和局部搜索相结合的搜索机制并行求解多个阈值.实验结果表明,该方法与基于人工鱼群算法的图像多阈值分割方法相比,明显提高了图像分割速度和分割质量. In order to obtain a group of satisfying thresholds in image segmentation quickly and accurately, this paper proposed a method based on shuffled frog leaping (SFL) algorithm and Otsu method for multilevel thresholding image segmentation. The method regarded the group of thresholds as a group of potential solutions to a certain objective function, and employed the extended Otsu method to be the fitness function for SFL algorithm. And then, the powerful searching ability of SFL algorithm was used to locate the thresholds in parallel, which combines the global search in the whole swarm and local searches in subswarms. Experimental results showed that compared with the method based on artificial fish swarm (AFS) algorithm, the suggested method obviously im- proved the performance of image segmentation in speed and quality.
作者 康杰红 马苗
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期634-640,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(60803088 10974130) 陕西省青年科技新星资助项目(2011kjxx17) 陕西省自然科学基金资助项目(2011JQ8009)
关键词 蛙跳算法 多阈值分割 群体智能 OTSU法 shuffled frog leaping algorithm multilevel thresholding segmentation swarm intelligence Otsumethod
  • 相关文献

参考文献14

  • 1杨晖.图像分割的阈值法研究[J].辽宁大学学报(自然科学版),2006,33(2):135-137. 被引量:45
  • 2SIDDHARTHA B,UJJWAL M,PARAMARTHA D. Multilevel image segmentation with adaptive image context based thresholding [ J ]. Applied Soft Computing, 2011 ( 11 ) : 946-962.
  • 3周晓伟,葛永慧.基于粒子群优化算法的最大类间方差多阈值图像分割[J].测绘科学,2010,35(2):88-89. 被引量:10
  • 4金聪,彭嘉雄.基于遗传策略的图像灰度多阈值选择方法[J].计算机工程与应用,2003,39(8):23-25. 被引量:16
  • 5韦苗苗,江铭炎.基于粒子群优化算法的多阈值图像分割[J].山东大学学报(工学版),2005,35(6):118-121. 被引量:34
  • 6JIAN M, MASTORAKIS N, YUAN D, et al. Multi - theshold image segmentation with improved artificial fish swarm algorithm block -coding and antenna selection [ C ]. European Computing Conference ( ECC ) , 2007 : 123-129.
  • 7SATHYA P D, KAYALVIZHI R. Amended bacterial foraging algorithm for muhilevel thresholding of magnetic resonance brain images [ J ]. Measurement, 2011,44 : 1 828-1 848.
  • 8HORNG M H. Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation [J]. Expert Systems with Applications, 2011, 38: 13 785-13 791.
  • 9EUSUFF M, LANSEY K. Optimization of water distri- bution network design using the shuffled frog leaping algorithm [ J ]. Journal of Water Resources Planning and Management ,2003,129 ( 3 ) :210-225.
  • 10OTSU N. A threshold selection method from gray - level histogram [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9 ( 1 ) : 62-66.

二级参考文献46

共引文献116

同被引文献53

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2刘健庄,谢维信,高新波.多阈值图像分割的遗传算法方法[J].模式识别与人工智能,1995,8(A01):126-132. 被引量:8
  • 3王祥科,郑志强.Otsu多阈值快速分割算法及其在彩色图像中的应用[J].计算机应用,2006,26(B06):14-15. 被引量:40
  • 4SONKA M, HLAVAC V, BOYLE R.hnage processing, analysis, and machine vision [ M ].India : Thomson Engineering,2007.
  • 5CHENG H D, JIANG X H, SUN Y, et al.Color image segmentation : advances and prospects [ J ].Pattern Recognition,2001,34 (12) :2259-2281.
  • 6BOYKOV Y,JOLLY M P.Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images[ C]// Proc of IEEE International Coni:rence on Computer Vision Vancouver,2001:105-112.
  • 7ZHOU H L,ZHENG J M, WEI L.Texture aware image segmentation using graph cuts and active contours[ J ] .Pattern Recogni- tion,2013,46(6) :1 719-1 733.
  • 8PENG B, ZHANG L, ZHANG D, et al.Image segmentation by iterated region merging with localized graph cut [ J ] .Pattern Rec- ognition,2011,44(10) :2 527- 2 538.
  • 9BOYKOV Y,FUNKA-Lea G.Graph cuts and efficient N-D image segmentation[ J] .International Journal of Computer Vision,2006,70(2) : 109-131.
  • 10SCHMIDT F R,TOPPE E,CREMERS D.Efficient planar graph cuts with application in computer vision[ C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, USA,2009:351-356.

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部