摘要
为探寻有效的高强低模医用钛合金制备方法,采用机械合金化方法制备了不同Fe含量的(Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex非晶/纳米晶合金粉末,随后采用放电等离子烧结-非晶晶化法得到了高强低模的超细晶钛基复合材料.结果表明:(1)机械合金化过程中,Fe含量对合金的非晶形成能力影响显著,文中实验条件下,只有当x增大至10时才能形成全非晶相的非晶粉末;(2)Fe含量也明显影响合成的块体钛合金的力学性能,合成的不同Fe含量合金中,只有(Ti69.7Nb23.7Zr4.9Ta1.7)94Fe6合金具有高强度和显著塑性,其压缩屈服强度为2425MPa,断裂强度为2650MPa,断裂应变为0.0691,平均弹性模量仅为52GPa,接近第三代生物医用钛合金的最低值.将所合成的超细晶钛合金与常用的两种生物钛合金(Ti-6Al-4V和Ti-13Nb-13Zr)进行抗摩擦磨损性能对比,发现所合成的钛合金具有最佳的耐磨性.
In order to explore an effective method to fabricate biomedical Ti alloy with high strength and low modu- lus, amorphous/nanocrystallized (Ti69 7 Nb23.7Zr4. 9Ta1. 7 )100-xFex alloy powders with different Fe contents were syn- thesized via mechanical alloying, and, subsequently, uhrafine-grained Ti-based composites with high strength and low modulus were fabricated via the spark plasma sintering-amorphous crystallization. The results show that, during the performed mechanical alloying, Fe content significantly affects the glass-forming ability of the alloy system, con- cretely, fully amorphous structure forms only when x reaches 10; and that Fe content also has an obvious effect on the mechanical properties of the bulk composites, only the bulk composite at a x value of 6 possesses high strength and distinct plasticity, with the corresponding compressive yield stress, fracture stress and fracture strain respec- tively being 2425 MPa, 2650 MPa and 0. 0691, and with an average elastic modulus of 52 GPa that is close to the minimum of the third-generation biomedical Ti alloys. Moreover, by comparing the friction and wear properties of the fabricated composites with those of two kinds of conventional biomedical Ti alloys (Ti-6AL-4V and Ti-13Nb-13Zr), it is found that the fabricated composites are of the best wear resistance.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2012年第10期43-50,共8页
Journal of South China University of Technology(Natural Science Edition)
基金
"973"计划前期研究专项(2010CB635104)
教育部"新世纪优秀人才支持计划"项目(NCET-11-0163)
关键词
粉末冶金
钛合金
复合材料
生物医用材料
力学性能
耐磨性
powder metallurgy
titanium alloy
composite
biomedical material
mechanical property
wear resis- tance