期刊文献+

基于变量贡献率的MSPC异常识别方法

Method of MSPC fault detection and diagnosis based on variable contributions
下载PDF
导出
摘要 异常识别是多元统计过程控制(MSPC,Multivariate Statistical Process Con-trol)方法有效应用的关键.针对现有研究对历史异常信息利用的不足,综合考虑了主成分变量贡献率与重构误差变量贡献率对异常识别的影响,将两种变量贡献率进行归一化处理并求和得到综合变量贡献率;提出了一种基于综合变量贡献率的MSPC异常识别方法,并基于matlab计算平台实现了该算法.通过田纳西过程故障模式仿真及异常识别,对该方法的应用及算法有效性进行了实例验证. Fault detection and diagnosis is one of the key technologies on the effective application of mult- ivariate statistical process control(MSPC). In order to overcome the historical fault information using shortage, considering the influence of principal components variable contributions and the reconstructive errors, the syn- thetical variable contributions were calculated by normalizing and summing these two different variable contri- butions. A novel MSPC fault detection and diagnosis method was proposed based on the integrated variable contributions, and the relevant algorithm and program were presented and implemented. A case study was il- lustrated through the Tennessee Eastman challenge process simulation platform. The experimental results dem- onstrate that the proposed method is feasible and valid.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第10期1295-1299,共5页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(50905010)
关键词 质量控制 统计过程控制 多变量控制系统 异常识别 quality control statistical process control muhivariable control systems fault detection anddiagnosis
  • 相关文献

参考文献9

  • 1Lieftucht D, Kruger U, Irwin G W. Improved reliability in diagnosing faults using multivariate statistics [ J ]. Computers and Chemical Engineering,2006,30:901 - 912.
  • 2Bozorgtabar B, Noorian F, Rad G A. Comparison of different PCA based face recognition algorithms using genetic programming [ C ]//5th International Symposium on Telecommunications. Tehran :IEEE,2010:801 - 805.
  • 3El-Midany T T, El-Baz M A, Abd-Elwahed M S. A proposed framework for control chart pattern recognitions in multivariate process using artificial neural networks [ J ]. Expert Systems with Applications ,2010,37 ( 2 ) : 1035 - 1042.
  • 4Alkaya A,Eker I. A new threshold algorithm based PCA method for fauh detection in transient state processes[ C ]//7th International Conference on Electrical and Electronics Engineering. Piscataway, NJ : IEEE ,2011 : 144 - 147.
  • 5Yu Jianbo. Fault detection using principal components-based Gaussian mixture model for semiconductor manufacturing processes[J]. IEEE Transactions on Semiconductor Manufactureing, 2011,24(3) :432 -444.
  • 6Stefatos G, Hamza A B. Fault detection and isolation of faults in a multivariate process with Bayesian network [ J ]. Journal of Process Control ,2010,20( 8 ) :902 - 911.
  • 7Yang Qingsong. Model-based and data driven fauh diagnosis methods with applications to process monitoring[D]. Cleveland: Department of Electrical Engineering and Computer Sciences, Case Western Reserve University,2004.
  • 8Downs J J, Vogel E F. A plant-wide industrial process control problem [ J ]. Computers and Chemical Engineering, 1993, 17 (3) :245 - 255.
  • 9Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemi- cal processes using fisher discriminant analysis, discriminant partial least squares, and principal component analysis [ J ]. Chemometrics and Intelligent Laboratory Systems,2000,50:243 - 252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部