摘要
异常识别是多元统计过程控制(MSPC,Multivariate Statistical Process Con-trol)方法有效应用的关键.针对现有研究对历史异常信息利用的不足,综合考虑了主成分变量贡献率与重构误差变量贡献率对异常识别的影响,将两种变量贡献率进行归一化处理并求和得到综合变量贡献率;提出了一种基于综合变量贡献率的MSPC异常识别方法,并基于matlab计算平台实现了该算法.通过田纳西过程故障模式仿真及异常识别,对该方法的应用及算法有效性进行了实例验证.
Fault detection and diagnosis is one of the key technologies on the effective application of mult- ivariate statistical process control(MSPC). In order to overcome the historical fault information using shortage, considering the influence of principal components variable contributions and the reconstructive errors, the syn- thetical variable contributions were calculated by normalizing and summing these two different variable contri- butions. A novel MSPC fault detection and diagnosis method was proposed based on the integrated variable contributions, and the relevant algorithm and program were presented and implemented. A case study was il- lustrated through the Tennessee Eastman challenge process simulation platform. The experimental results dem- onstrate that the proposed method is feasible and valid.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2012年第10期1295-1299,共5页
Journal of Beijing University of Aeronautics and Astronautics
基金
国家自然科学基金资助项目(50905010)
关键词
质量控制
统计过程控制
多变量控制系统
异常识别
quality control
statistical process control
muhivariable control systems
fault detection anddiagnosis