期刊文献+

基于多重分形参数的高光谱数据特征提取 被引量:4

Feature extraction method based on multifractal parameters for hyperspectral imagery
下载PDF
导出
摘要 针对单一分形维数不能表征高光谱数据光谱局部吸收特征的问题,提出了基于光谱概率测度的多重分形参数特征提取方法.基于光谱信息度量进行光谱概率测度的计算,基于配分函数法估计得到尺度函数;通过对尺度函数求导计算出Holder指数,并对尺度函数勒让德Legendre变换计算出多重分形谱;从多重分形谱和Holder指数之间的函数关系提取表征多重分形谱形态的4个多重分形谱参数作为光谱特征参数;并应用于基于最小距离准则的航空推扫式高光谱成像仪(PHI,Prush-broom Hyperspectral Imager)图像监督分类.结果证明:利用基于光谱概率测度的多重分形参数特征提取方法提取的光谱特征参数进行分类得到的总体分类正确率达94.789%,分类精度明显高于利用信息量维数和多重分形谱特征提取方法进行分类的结果,证明了基于光谱概率测度的多重分形参数特征提取方法提取的多重分形参数的有效性和可靠性. Multi-fractal parameter extraction method based on spectral probability measurement was pro- posed to resolve the problem that the local absorption characteristics of hyperspectral data can not be described by the single fractal dimension. The method of spectral information measurement was used to calculate the spectral probability. The scaling function was estimated with the partition function. The differential coefficient of scaling function was calculated to obtain Holder exponent, and the multi-fractal spectrum was computed with Legendre transformation of scaling function. Four muhi-fractal parameters can be extracted from muhi-fractal spectrum and Holder exponent. The minimum Euclidean distance rule with the characteristic extraction based on muhi-fractal parameters was applied to hyperspectral image supervised classification. The hyperspectral im- age was collected by airborne push-broom hyperspectral imager (PHI). The applied results show that the effi- ciency and reliability of the proposed method and its classification accuracy are about 94. 789% , which is bet- ter than the classification accuracy of information fractal dimension and multi-fractal spectrum.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2012年第10期1317-1320,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(61008047 61177008) 中国地质调查局地质调查资助项目(1212011120227) 长江学者和创新团队发展计划资助项目(IRT0705)
关键词 高光谱遥感 特征提取 多重分形谱参数 尺度函数 推扫式高光谱成像仪 hyperspectral remote sensing feature extraction muhi-fractal parameters scaling function push-broom hyperspectral imager
  • 相关文献

参考文献10

  • 1Zhou Ziyong. Multifractal based hyperion hyperspectral data mining[C]//The Seventh International Conference on Fuzzy System and Knowledge Discovery. USA, NJ: IEEE ,2010:2109 - 2113.
  • 2Tzeng Y C, Fan K T, Su Y J, et. al. A parallel differential box counting algorithm applied to hyperspectral iroage classification [C]//IEEE International Geosciences and Remote Sensing Symposium (IGARSS). USA, NJ : IEEE, 2009 : V216 - V219.
  • 3张锋,邹焕新,雷琳.一种基于局部分形维的CFAR检测算法[J].信号处理,2012,28(1):105-111. 被引量:3
  • 4Zhang Huaguo, Huang Weigen, Zhou Changbao. Fractal characterization of IKONOS imagery [ C ]//Multispectral and Hyperspectral Remote Sensing Instruments and Applications. Bellinggham : SPIE,2003 ,4897 :292 - 301.
  • 5周子勇,李朝阳.高光谱遥感数据光谱曲线分形特征研究[J].中北大学学报(自然科学版),2005,26(6):451-454. 被引量:14
  • 6Abadi M ,Grandchamp E. Legendre spectrum for texture classification [C]//The 8th International Conference on Signal Processing. USA,NJ : IEEE ,2006,2 : 16 - 20.
  • 7Chang Chein I. Spectral information divergence for hyperspectral image analysis[ C]//IEEE International Geosciences and Remote Sensing Symposium ( IGARSS). USA, NJ: IEEE, 1999,1 : 509 -511.
  • 8Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities : the characterization of strange sets [ J ]. Physical Review A, 1986,33 ( 2 ) : 1141 - 1151.
  • 9周炜星,吴韬,于遵宏.多重分形奇异谱的几何特性II.配分函数法[J].华东理工大学学报(自然科学版),2000,26(4):390-395. 被引量:32
  • 10李彤,商朋见.多重分形在掌纹识别中的研究[J].物理学报,2007,56(8):4393-4400. 被引量:26

二级参考文献39

  • 1诸葛霞,向健勇.基于分形特征的目标检测算法概述及仿真[J].红外技术,2006,28(10):576-579. 被引量:6
  • 2谢和平,孙洪泉.分形数学基础与分形在岩石力学中的应用[J].矿业世界,1996(4):1-6. 被引量:12
  • 3Mandelbrot B B.The Fractal Geometry of Nature[M]. San Francisco.CA:Freeman,1982.
  • 4Pilar G C.Empirical evidence of long-range correlations in stock return[J].physical,2000,287:396-404.
  • 5赵亦工 朱红 等.基于分形模型的人造目标检测技术[J].红外与毫米波学报,1995,14(5):336-340.
  • 6Vandewalle N,Ausloos M,Boveroux P 1999 Physica A 269 170.
  • 7Malamud B D,Turcotte D L 1999 J.Stat.Plan.Infer.80 173.
  • 8Montanari A,Rosso R,Taqqu M S 2000 Water Resour.Res.36 1249.
  • 9Peng C K,Buldyrev S V,Goldberger A L,Havlin S,Simons M,Stanley H E 1993 Phys.Rev.E 47 3730.
  • 10Miller B 1994 IEEE Spectrum 32 22.

共引文献70

同被引文献66

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部