期刊文献+

Semisymmetric graphs of order 6p^2 and prime valency 被引量:3

Semisymmetric graphs of order 6p^2 and prime valency
原文传递
导出
摘要 In this paper, we investigate semisymmetric graphs of order 6p2 and of prime valency. First, we give a classification of the quasiprimitive permutation groups of degree dividing 3p2, and then, on the basis of the classification result, we prove that, for primes k and p, a connected graph Γ of order 6p2 and valency k is semisymmetric if and only if k = 3 and either Γ is the Gray graph, or p ≡ 1 (mod 6) and Γ is isomorphic to one known graph. In this paper, we investigate semisymmetric graphs of order 6p2 and of prime valency. First, we give a classification of the quasiprimitive permutation groups of degree dividing 3p2, and then, on the basis of the classification result, we prove that, for primes k and p, a connected graph Γ of order 6p2 and valency k is semisymmetric if and only if k = 3 and either Γ is the Gray graph, or p ≡ 1 (mod 6) and Γ is isomorphic to one known graph.
出处 《Science China Mathematics》 SCIE 2012年第12期2579-2592,共14页 中国科学:数学(英文版)
关键词 semisymmetric graph bi-Cayley graph normal cover quasiprimitive permutation group 半对称图 对称图形 本原置换群 连通图 MOD 分类 素数 同构
  • 相关文献

参考文献1

  • 1LU Zaiping, WANG Changqun & XU MingyaoLMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Mathematics, Zhengzhou University, Zhengzhou 450052, ChinaPresent address: Department of Mathematics, Qufu Normal University, Qufu 273165, China..On semisymmetric cubic graphs of order 6p^(2)[J].Science China Mathematics,2004,47(1):1-17. 被引量:12

二级参考文献8

  • 1Goldschmidt,D. M.Automorphisms of trivalent graphs[].Annals of Mathematics.1980
  • 2Du Shaofei,XU Mingyao.A classification of semisymmetric graphs of order 2pq, Com[].Communications in Algebra.2000
  • 3Titov,V. K.On symmetry in graphs, Voprocy Kibernetiki 9150, Proc.of Hall Union Seminar on Combinatorial Mathematices (in Russian), part 2, Nauka[].Moscow.1975
  • 4Bouwer,I. Z.On edge but not vertex transitive cubic graphs, Canad.Math[].Bulletin.1968
  • 5Folkman,J.Regular line-symmetric graphs, J.Comb[].Theory Ser B.1967
  • 6Ivanov,A. V.On edge but not vertex transitive regular graphs, Comb[].Annals of Discrete Mathematics.1987
  • 7Bouwer,I. Z.On edge but not vertex transitive regular graphs, J.Comb[].Theory Ser B.1972
  • 8Cameron,P. J.Finite permutation groups and finite simple groups, Bull[].London Mathematical Society.1981

共引文献11

同被引文献3

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部