摘要
Fe-based alloy coatings reinforced by Ti( C, N) particles was produced through CO2 laser cladding technology. The microstructure of laser cladding coating was analyzed by means of X-ray diffraction ( XRD ), transmission electron microscopy (TEM) , selected area electron diffraction ( SAED ) , scanning electron microscopy (SEM) and electron probe microscopic analyzer ( EPMA ). The mechanical property of the layer was measured by using microhardness meter. The results show that Ti ( C0. 3 N0. 7 ) panicles are introduced by an in-situ metallurgical reaction between TiN particle and graphite powder during laser cladding process. Titanium carbonitrides particles existed in the layer are fairly fine, ranging from 0. 1 μm to 5.0 μm, and evenly dispersed in the metal α-Fe matrix. Most of them take on nearly rhombus shape, and some of them are irregular in shape. The microhardness of laser cladding layer ranges from 770 HV0. 3 to 850 HV0. 3.
Fe-based alloy coatings reinforced by Ti( C, N) particles was produced through CO2 laser cladding technology. The microstructure of laser cladding coating was analyzed by means of X-ray diffraction ( XRD ), transmission electron microscopy (TEM) , selected area electron diffraction ( SAED ) , scanning electron microscopy (SEM) and electron probe microscopic analyzer ( EPMA ). The mechanical property of the layer was measured by using microhardness meter. The results show that Ti ( C0. 3 N0. 7 ) panicles are introduced by an in-situ metallurgical reaction between TiN particle and graphite powder during laser cladding process. Titanium carbonitrides particles existed in the layer are fairly fine, ranging from 0. 1 μm to 5.0 μm, and evenly dispersed in the metal α-Fe matrix. Most of them take on nearly rhombus shape, and some of them are irregular in shape. The microhardness of laser cladding layer ranges from 770 HV0. 3 to 850 HV0. 3.