期刊文献+

ERROR REDUCTION, CONVERGENCE AND OPTIMALITY FOR ADAPTIVE MIXED FINITE ELEMENT METHODS FOR DIFFUSION EQUATIONS 被引量:1

ERROR REDUCTION, CONVERGENCE AND OPTIMALITY FOR ADAPTIVE MIXED FINITE ELEMENT METHODS FOR DIFFUSION EQUATIONS
原文传递
导出
摘要 Error reduction, convergence and optimality are analyzed for adaptive mixed finite element methods (AMFEM) for diffusion equations without marking the oscillation of data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error estimator, is shown to reduce with a fixed factor between two successive adaptive loops, up to an oscillation. Secondly, the convergence of AMFEM is obtained with respect to the quasi-error plus the divergence of the flux error. Finally, the quasi-optimal convergence rate is established for the total error, i.e. the stress variable error plus the data oscillation. Error reduction, convergence and optimality are analyzed for adaptive mixed finite element methods (AMFEM) for diffusion equations without marking the oscillation of data. Firstly, the quasi-error, i.e. the sum of the stress variable error and the scaled error estimator, is shown to reduce with a fixed factor between two successive adaptive loops, up to an oscillation. Secondly, the convergence of AMFEM is obtained with respect to the quasi-error plus the divergence of the flux error. Finally, the quasi-optimal convergence rate is established for the total error, i.e. the stress variable error plus the data oscillation.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2012年第5期483-503,共21页 计算数学(英文)
关键词 Adaptive mixed finite element method Error reduction CONVERGENCE Quasi-optimal convergence rate Adaptive mixed finite element method Error reduction Convergence Quasi-optimal convergence rate
  • 相关文献

参考文献2

二级参考文献43

  • 1DU ShaoHong,XIE XiaoPing.Residual-based a posteriori error estimates of nonconforming finite element method for elliptic problems with Dirac delta source terms[J].Science China Mathematics,2008,51(8):1440-1460. 被引量:4
  • 2C. Carstensen,Jun Hu.A unifying theory of a posteriori error control for nonconforming finite element methods[J]. Numerische Mathematik . 2007 (3)
  • 3Rodolfo Araya,Edwin Behrens,Rodolfo Rodríguez.A posteriori error estimates for elliptic problems with Dirac delta source terms[J]. Numerische Mathematik . 2006 (2)
  • 4Carsten Carstensen,Ronald H.W. Hoppe.Convergence analysis of an adaptive nonconforming finite element method[J]. Numerische Mathematik . 2006 (2)
  • 5S. Bartels,C. Carstensen,G. Dolzmann.Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis[J]. Numerische Mathematik . 2004 (1)
  • 6Peter Binev,Wolfgang Dahmen,Ron DeVore.Adaptive Finite Element Methods with convergence rates[J]. Numerische Mathematik . 2004 (2)
  • 7Carsten Carstensen,S?ren Bartels,Stefan Jansche.A posteriori error estimates for nonconforming finite element methods[J]. Numerische Mathematik . 2002 (2)
  • 8M. -C. Rivara,M. Vemere.Cost analysis of the longest-side (triangle bisection) refinement algorithm for triangulations[J]. Engineering with Computers . 1996 (3-4)
  • 9Monique Dauge.Neumann and mixed problems on curvilinear polyhedra[J]. Integral Equations and Operator Theory . 1992 (2)
  • 10Eduardo Casas.L 2 estimates for the finite element method for the Dirichlet problem with singular data[J]. Numerische Mathematik . 1985 (4)

共引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部