摘要
PtSnSr/HZSM-5 catalysts with different amounts of strontium were prepared by sequential impregnation method, and characterized by BET analysis, TEM, NH3-TPD, Hz-TPR, TPO and TG techniques. The results showed that the addition of strontium could modify the characteristics and properties of both acid function and metal function of Pt-Sn-based cata- lysts. In this case, PtSnSr/HZSM-5 catalyst with an appropriate amount of Sr (1.2%) showed higher catalytic activity and lower amount of coke deposits than PtSn/HZSM-5 catalyst. However, excessive loading of Sr could facilitate the reduction of Sn, which was unfavorable to the reaction. Afterwards, 1.0 m% of Na was added into the PtSnSr(1.2%)/HZSM-5 catalyst to improve the catalytic performance in propane dehydrogenation, and this catalyst displayed the best catalytic performance during our experiments. After having been subjected to reaction for 5 h, the PtSnNa(1.0%)Sr(1,2%)/HZSM-5 catalyst had achieved a higher than 95% selectivity towards propene along with a corresponding propane conversion rate of 32.2%.
PtSnSr/HZSM-5 catalysts with different amounts of strontium were prepared by sequential impregnation method,and characterized by BET analysis,TEM,NH3-TPD,H2-TPR,TPO and TG techniques.The results showed that the addition of strontium could modify the characteristics and properties of both acid function and metal function of Pt-Sn-based catalysts.In this case,PtSnSr/HZSM-5 catalyst with an appropriate amount of Sr(1.2%) showed higher catalytic activity and lower amount of coke deposits than PtSn/HZSM-5 catalyst.However,excessive loading of Sr could facilitate the reduction of Sn,which was unfavorable to the reaction.Afterwards,1.0 m% of Na was added into the PtSnSr(1.2%)/HZSM-5 catalyst to improve the catalytic performance in propane dehydrogenation,and this catalyst displayed the best catalytic performance during our experiments.After having been subjected to reaction for 5h,the PtSnNa(1.0%)Sr(1.2%)/HZSM-5 catalyst had achieved a higher than 95% selectivity towards propene along with a corresponding propane conversion rate of 32.2%.
基金
The Production and Research Prospective Joint Research Project (BY2009153)
The Science and Technology Support Program (BE2008129) of Jiangsu Province of China
the National Nature Science Foundation of China (50873026,21106017) for financial support