期刊文献+

关于超级有穷条件下的Drasin问题 被引量:1

On Drasin's questions of meromorphic functions of finite hyper-order
原文传递
导出
摘要 1992年,杨乐和王跃飞在有穷级条件下给出了亚纯函数具有满亏量和的充分必要条件,并解决了1976年Drasin提出的三个著名问题.本文在超级有穷条件下证明了杨乐和王跃飞的相应结果也成立,从而在超级有穷条件下解决了Drasin提出的三个著名问题,改进了杨乐和王跃飞的相应结果,并举例说明本文结果在某种意义上是最佳的. In 1992,Yang and Wang gave sufficient and necessary conditions concerning maximal deficiency sums of meromorphic functions of finite order,and resolved three questions given by Drasin(1976).In this paper,we prove that the corresponding results in Yang and Wang(1992) are still valid for meromorphic functions of finite hyper-order,and so we resolve the three questions given by Drasin(1976) for meromorphic functions of finite hyper-order,and so the results in this paper improve the corresponding results in Yang and Wang(1992).Some examples are provided to show that the results in this paper are,in a sense,the best possible.
出处 《中国科学:数学》 CSCD 北大核心 2012年第11期1095-1114,共20页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171184) 山东省自然科学基金(批准号:Z2008A01和ZR2009AM008)资助项目
关键词 NEVANLINNA理论 亚纯函数 极大亏量和 亏量和 Nevanlinna theory meromorphic function maximal deficiency sum total deficiency
  • 相关文献

参考文献14

  • 1Cherry W, Ye Z. Nevanlinna’s Theory of Value Distribution. Berlin: Springer-Verlag, 2001.
  • 2Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964.
  • 3Yang C C, Yi H X. Uniqueness theory of meromorphic functions. In: Mathematics and its Applications, vol. 557. Dordrecht: Kluwer Academic Publishers, 2003.
  • 4Yang L. Value Distribution Theory. Berlin: Springer, 1993.
  • 5Drasin D. An introduction to potential theory and meromorphic functions. In: Complex analysis and its applications, vol. I. Vienna: Internat Atomic Energy Agency, 1976, 1-93.
  • 6杨乐,王跃飞.Drasin问题和Mues猜测[J].中国科学(A辑),1992,23(5):455-462. 被引量:8
  • 7Toda N. On a modified deficiency of meromorphic functions. T?hoku Math J, 1970, 22: 635-658.
  • 8Frank G, Weissenborn G. Rational deficient functions of meromorphic functions. Bull London Math Soc, 1986, 18:29-33.
  • 9Furuta M, Toda N. On exceptional values of meromorphic functions of divergence class. J Math Soc Japan, 1973, 25:667-679.
  • 10仪洪勋.亚纯函数的拟亏量和特征函数[J].数学学报(中文版),1991,34(4):451-461. 被引量:2

二级参考文献2

  • 1潘承洞,阶的估计,1983年
  • 2杨乐,值分布论及其新研究,1982年

共引文献7

同被引文献13

  • 1Yang L. Value Distribution Theory. Berlin: Springer-Verlag, 1993.
  • 2Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964.
  • 3Hayman W K. Picard values of meromorphic functions and their derivatives. Ann Math, 1959, 70:9-42.
  • 4Mues E. Uber eine defekt-und verzweigungsrelation fiir die ableitung meromorpher funktionen. Manuscripta Math 1971, 5:275 297.
  • 5Yang L. Precise estimate of total deficiency of meromorphic derivatives. J Anal Math, 1990, 55:287 296.
  • 6Wang Y F. Total defect of a meromorphic function and all its derivatives. Results Math, 1992, 22:631-638.
  • 7Singh S K, Kulkarni V N. Characteristic function of a meromorphic function and its derivative. Ann Polon Math, 1973, 28:123 133.
  • 8Fang M L. A note on a result of Singh and Kulkarni. Int J Math Math Sci, 2000, 23:285-288.
  • 9Eremenko A. A new proof of the Drasin theorem on meromorphic functions of finite order with a maximal sum of defects, I. J Soviet Math, 1990, 52:3522 3529.
  • 10Prank C, Weissenborn G. Rational deficient functions of meromorphic functions. Bull Lond Math Soc, 1986, 18:29 33.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部